Читать книгу Водородное топливо. Производство, хранение, использование - Юрий Степанович Почанин - Страница 5

Глава 2. Методы производства водорода
2.1. Паровая конверсия природного газа
2.1.1. Пиролиз метана

Оглавление

Пиролиз метана – это умеренно эндотермический процесс разложения природного газа (органического сырья). Пиролиз метана является альтернативным подходом к получению водорода из природного газа без образования CO2 в ходе реакции: CH4→ C↓ + 2H2↑

Пиролиз – это процесс разложения метана на водород и чистый углерод, но только не в виде газа, а в твёрдом состоянии. Соответственно, углекислый газ не выбрасывается в атмосферу, а складируется в твёрдом состоянии. Данный метод не требует улавливания и подземного хранения, поэтому может применяться в качестве промышленного материала для производства углеродных материалов.

При пиролизе метана образуется водород, который может быть использован в энергетике, транспортном секторе, в промышленных/химических процессах, и для снижения выбросов загрязняющих веществ и парниковых газов, а также углерода в твердой форме.

Пиролиз метана относится к целому ряду процессов (по аналогии с конверсией метана), которые могут быть разделены на 4 больших класса – термический пиролиз, каталитический пиролиз, плазменный пиролиз, а также отдельно может быть выделен пиролиз в расплавах металлов.

В настоящее время процессы получения водорода пиролизом метана не выведены на промышленный уровень, но научные исследования ведутся по всем четырем направлениям. В то время, как компании BASF, Thyssenkrupp и Linde сосредоточились на процессе термического пиролиза, американская компания Monolith занимается плазменным пиролизом. Другой подход применяют IASS и KIT – использование жидкого металла в качестве теплоносителя. Напротив, австралийский процесс HAZER® компании Hazer Group основан на каталитическом пиролизе метана.

Для термического разложения метана необходимы высокие температуры (выше 1000°C). Использование катализатора помогает увеличить скорость реакции и таким образом снижает температуру, требуемую для конверсии природного газа. Технологической особенностью такого процесса является периодическое восстановление катализатора, что сопровождается выбросами диоксида углерода и повышает «углеродный след» получения водорода.

Плазменный пиролиз – это способ разложения метана в плазме (например, сверхвысокочастотного разряда). В этом случае в качестве источника энергии используется электроэнергия (сетевая или возобновляемая) и, соответственно, процесс не сопровождается «прямыми» выбросами диоксида углерода. Существенным преимуществом пиролиза метана является меньший удельный расход электроэнергии (оценивается менее 20 кВтч на килограмм водорода в сравнении, например, с электролизом воды.

При температурах выше 600°С происходит глубокое разрушение углеродной цепи алканов с образованием этилена (600–900°С), ацетилена (-1000°С) или сажи и водорода (1100–1600°С). Изменения продуктов реакции в зависимости от температуры отчетливо видны при пиролизе метана.

Деструкция метана при температурах выше 1200°С происходит очень глубоко с разрушением всех связей С – Н, что приводит к образованию сажи (углерода) и водорода.


При частичном окислении метан и другие углеводороды в природном газе вступают в реакцию с ограниченным количеством кислорода (как правило, из воздуха), которого недостаточно для полного окисления углеводородов до углекислого газа и воды. При меньшем, чем стехиометрическое количество кислорода, продукты реакции содержат в основном водород и монооксид углерода (и азот, если реакция проводится с воздухом, а не с чистым кислородом), а также относительно небольшое количество диоксида углерода и других соединений. Затем, в реакции переноса воды-газа, окись углерода реагирует с водой для того, чтобы сформировать углекислый газ и больше водорода.

Производство водорода из природного газа или других углеводородов достигается также частичным окислением. Смесь топливо-воздух или топливо-кислород частично сгорает, что приводит к обогащению водородом синтез-газа. Водород и монооксид углерода получают в результате реакции конверсии водяного газа. Двуокись углерода может подаваться совместно для снижения отношения водорода к монооксиду углерода.

Частичное окисление является экзотермическим процессом, оно выделяет тепло. Этот процесс, как правило, намного быстрее, чем паровая конверсия, и требует меньшего объема реактора. Как видно из химических реакций парциального окисления, этот процесс изначально производит на единицу вводимого топлива меньше водорода, чем получается при паровой конверсии того же топлива.

Парциальное окисление реакции метана:

CH4+ ½O2→ CO + 2H2 (+ тепло)

Водогазовая сдвиговая реакция:

CO + H2O → CO2+ H2 (+ небольшое количество тепла)

В частичное окисление реакция происходит, когда субстехиометрический топливно-воздушная смесь или топливо-кислород частично сгорел в реакторе риформинга или частичного окисления. Различают частичное термическое окисление (TPOX) и каталитическое частичное окисление (CPOX).

Получение водорода в условиях промышленности связано с процессом выделения его из природного газа, вернее, из его основного компонента метана. Его смешивают с кислородом и паром воды. Выделение водорода происходит при высоких температурах. При нагревании смеси указанных газов до 800–900°C происходит реакция в присутствии катализатора, которая схематически может быть представлена в виде уравнения:

2CH4+ O2+ 2H2O → 2CO2+ 6H2

Затем полученную газовую смесь разделяют. Выделенный при этом водород очищается и используется или на месте получения, или транспортируется в нужное место под повышенным давлением в стальных баллонах.

Не менее важным способом получения водорода в промышленности является его выделение из газов переработки нефти или из коксового газа. Благодаря глубокому охлаждению, свойственному данному методу, все газы сжижаются, кроме водорода.

Водородное топливо. Производство, хранение, использование

Подняться наверх