Читать книгу Робототехника в промышленности - Юрий Степанович Почанин - Страница 7
Глава 3. Конструкция промышленного робота
3.1. Механическая система
ОглавлениеМеханическая система (манипулятор) обеспечивает выполнение двигательных функций и реализацию технологического назначения ПР. Она обеспечивает движения выходного звена и закрепленного на нем рабочего органа в пространстве по заданной траектории и с заданной ориентацией.
Механическая система ПР образована двумя подсистемами – несущей механической системой (НМС) и исполнительной механической системой (ИМС). Особенность конструкции механической системы состоит в том, что одни и тс же элементы относятся как к одной, так и ко второй подсистемам, в состав которых в общем случае входят следующие элементы:
–опора, в виде основания или передвижных тележек напольного или подвесного типа;
–корпус робота различной формы с вмонтированными в него механизмами подъема и поворота руки и перемещения робота;
–корпус руки робота с вмонтированными в него механизмами перемещения руки, звена, а иногда и захватного устройства;
–рука робота с одним или несколькими звеньями;
–захватное устройство.
Кинематическое и компоновочное решения влияют на конструктивное исполнение элементов, определяющее конструкцию робота, которая, в свою очередь, определяет его основные характеристики: число степеней подвижности, маневренность, сервис, систему координатных перемещений и вид системы координат, в которой они работают. Основной рычажный механизм манипулятора может обеспечить полное соответствие этому условию лишь при наличии не менее чем шести управляемых степеней подвижности (свободы). В этом случае ПР представляет собой дорогую и достаточно сложную как в изготовлении, так и в эксплуатации автоматическую систему. В целях снижения стоимости и сложности ПР, по возможности, стремятся использовать механические системы с меньшим числом степеней свобод.
Опорные конструкции ПР выполняются в виде оснований, корпусов, стоек, рам тележек, порталов и т.п. Они служат для размещения всех устройств и агрегатов IIP, а также для обеспечения необходимой прочности и жесткости манипулятора.
Манипуляционная система (манипулятор) робота представляет собой многозвенный пространственный механизм с разомкнутой кинематической цепью, первое звено которого (стойка) является основанием робота, а последнее несет рабочий орган, непосредственно взаимодействующий с объектом манипулирования. Система звеньев МС структурно связана в кинематическую цепь с помощью вращательных или поступательных пар.
Под звеном механизма понимают деталь (либо совокупность деталей с общим законом движения), которая в процессе движения и взаимодействия с другими звеньями остается жесткой, не изменяя своих размеров и формы. Неподвижное звено механизма называется стойкой, или основанием. Соединение двух соприкасающихся звеньев, допускающее их определенное относительное движение, именуют кинематической парой, или, сокращенно, парой. Если одно из крайних звеньев многозвенного механизма закреплено к основанию, а другое свободно, то такой механизм относят к группе механизмов с открытой, или разомкнутой, кинематической цепью.
Свободное абсолютно твердое тело (или звено), не связанное с другими телами, может совершать три независимых поступательных движения в направлении осей X, У, Z и три вращательных относительно них. Минимальное количество обобщенных координат, полностью определяющее положение и возможные направления движения тела, называют числом его степеней свободы, или степеней подвижности. Промышленный робот, который имеют 6 степеней свободы, а это значит, что он способен двигаться по 6 различным направлениям, представлен рис.3.3.
Рис. 3.3. Промышленный робот с 6 степенями свободы
В конструкциях манипуляторов преимущественно распространены кинематические пары пятого класса, значительно реже используются пары четвертого и, тем более, третьего классов. Это объясняется тем, что пары высоких классов более сложны и менее технологичны по сравнению с парами низких классов, а кроме того, сложны в управлении. В связи с этим во многих случаях целесообразно вместо одной пары высокого применять несколько пар низкого класса.
Рабочий орган манипулятора ПР, необходимый для непосредственного воздействия на объект манипулирования при выполнении технологических операций или вспомогательных переходов, представляет собой захватное устройство или рабочий инструмент.
Устройство передвижения служит для перемещения манипулятора или ПР в целом в необходимое место рабочего пространства и состоит из ходовой части и приводных устройств.
Подобно человеческой руке манипулятор также перемещает концевой эффектор с одного места на другое. При оснащении концевого эффектора различными устройствами, у робота появляется возможность выполнять определенные технологические операции. В робототехнике концевой эффектор – устройство на конце руки робота, предназначенное для взаимодействия с окружающей средой. Одним из наиболее распространенных вариантов является подобие руки, которая позволяет роботу брать и перемещать объекты с места на место
Функциональная схема механической системы промышленного робота представлена на рис.3.4.
Рис. 3.4. Функциональная схема механической системы промышленного робота
Рассмотрев определение числа степеней подвижности, можно перейти к рассмотрению маневренности манипулятора ПР. Под маневренностью принято понимать число его степеней подвижности при неподвижном (зафиксированном в пространстве) положении его выходного звена (рабочего органа). Маневренность определяет возможность руки манипулятора выполнять сложные движения и обходить препятствия в рабочем пространстве при манипулировании с объектом или выполнении сложных операций.
Все манипуляционные устройства характеризуются маневренностью и коэффициентом сервиза (КС), под которым понимают возможность подхода РО к заданной точке с разных направлений. КС дает представление о двигательных возможностях М. Маневренность М – ϶ᴛᴏ число степеней подвижности при фиксированном положении РО, которая определяет возможность обхода манипулятором препятствий в рабочем объеме и способность к выполнению сложных операций.
Движения М подразделяются на группы. Так, к примеру, движения М, снабженного наиболее распространенным в ПР РО в виде (устройства захвата) УЗ бывают следующих видов:
–ориентирующие перемещения УЗ, соизмеримые с его размерами;
–транспортирующие перемещения, определяемые размерами звеньев руки и соизмеримые с размерами рабочего объема;
–координатные перемещения на расстояния, превышающие размеры ПР и размеры рабочего объема.
Совокупность степеней подвижности манипулятора ПР определяет возможность его рабочего органа занимать различные положения в разных областях ограниченного конкретными связями и размерами звеньев кинематической цепи рабочего пространства М.