Читать книгу Основные понятия систем искусственного иттеллекта - Юрий Степанович Почанин - Страница 7

ГЛАВА 3. КЛАССИФИКАЦИЯ СИСТЕМ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА
3.2. Информационное (прагматическое) направление

Оглавление

Сторонники информационного направления убеждены, что «важнее всего результат», т. е. хорошее совпадение поведения искусственно созданных и естественных интеллектуальных систем, а что касается внутренних механизмов формирования поведения, то разработчик искусственного интеллекта вовсе не должен копировать или даже учитывать особенности естественных, живых аналогов.

Информационное направление разделяется на три составляющие.

1.Эвристическое программирование – это разработка оригинальных методов, алгоритмов решения задач, подобных человеческим, а в некоторых случаях даже и лучших. Под эвристикой понимается правило, стратегия, метод или прием, используемые для повышения эффективности системы, которая пытается найти решения сложных задач. Эвристическая программа – это программа для компьютера, использующая эвристики.

Разработка машинных эвристических программ идет по двум основным направлениям:

а) создаются специализированные программы для решения относительно узких классов задач с использованием особенностей этих же классов;

б) программы второго направления претендуют на универсальное замещение человеческого интеллекта. Они чаще всего отождествляются с моделями мыслительного процесса.

Эвристические программы могут играть в шахматы, шашки, карточные игры, находить ответы на вопросы, находить решения из области математических исчислений; доказывать теоремы в математической логике и геометрии; способны обучаться на основе своего опыта; решать различные классы задач. Здесь исследователь воспроизводит в компьютере методы, используемые людьми, т.к. интеллект человека выше интеллекта компьютера. Структура программ решения интеллектуальных задач, предложенная Д. А. Поспеловым, представлена на рис. 3.3.


Рис. 3.3. Программы решения интеллектуальных задач


2.Системы, основанные на знаниях. Это направление в искусственном интеллекте образует его фундамент. Именно здесь создается теория данного научного направления, решаются основные проблемы, связанные с центральным объектом изучения искусственного интеллекта.

Структура знаний систем, основанных на знаниях, рис.3.4.


Рис. 3.4. Системы, основанные на знаниях.


Всякая предметная (проблемная) область деятельности может быть описана в виде некоторой совокупности сведений о структуре этой области, основных ее характеристиках, процессах, протекающих в ней, а также о способах решения возникающих в ней задач. При использовании интеллектуальных систем для решения задач в данной предметной области необходимо собрать о ней сведения и создать концептуальную модель этой области. Источниками знаний могут быть документы, статьи, книги, фотографии, киносъемка и многое другое. Из этих источников надо извлечь содержащиеся в них знания. Этот процесс может оказаться достаточно трудным, ибо надо заранее оценить важность тех или иных знаний для работы интеллектуальной системы.

В области извлечения знаний можно выделить два основных направления: формализация качественных знаний и интеграция знаний. Первое направление связано с созданием разнообразных методов, позволяющих переходить от знаний, выраженных в текстовой форме, к их аналогам, пригодным для ввода в память интеллектуальной системы. В связи с этой проблемой развивались не только традиционные методы обработки экспериментальных данных, но и совершенно новое направление, получившее название нечеткой математики.

Нечеткая математика и ее методы оказали существенное влияние на многие области искусственного интеллекта и, в частности, на весь комплекс проблем, связанных с представлением и переработкой качественной информации.

Когда инженер по знаниям получает знания из различных источников, он должен интегрировать их в некоторую взаимосвязанную и непротиворечивую систему знаний о предметной области. Знаний, содержащихся в источниках информации, отчужденных от специалиста, как правило, недостаточно. Значительная часть профессионального опыта остается вне этих источников, в головах профессионалов, не могущих словесно их выразить. Такие знания часто называют профессиональным умением или интуицией. Для того, чтобы приобрести такие знания, нужны специальные приемы и методы. Они используются в инструментальных системах по приобретению знаний, создание которых – одна из современных задач инженерии знаний.

Следующая большая проблема, изучаемая в искусственном интеллекте, – это представление знаний в памяти системы. Для этого разрабатываются разнообразные модели представления знаний. В настоящее время в интеллектуальных системах используются четыре основные модели знаний. Первая модель, возможно, наиболее близка к тому, как представляются знания в текстах на естественном языке. В ее основе лежит идея о том, что вся необходимая информация может быть описана как совокупность троек вида: (a R b), где a и b два объекта или понятия, а R – двоичное отношение между ними. Такая модель графически может представляться в виде сети, в которой вершинам соответствуют объекты или понятия, а дугам – отношения между ними. Дуги помечены именами соответствующих отношений. Такая модель носит название семантической сети.

3. Интеллектуальное программирование. Трудоемкость разработки интеллектуальных приложений зависит от использованного языка, инструментальных систем, парадигмы программирования, средств разработки ИИС и приобретения знаний, систем когнитивной графики, рис.3.5.


Рис. 3.5. Инструментальные средства интеллектуальных систем.


Особняком стоят языки для представления знаний. Это языки, ориентированные на фреймы KL-1, KRL, FRL или язык ПИЛОТ, ориентированный на модель знаний в виде продукций

Системы когнитивной графики одно из направлений в интеллектуальном программировании. Одна из центральных идей искусственного интеллекта – это идея о том, что суть самого феномена интеллекта состоит в совместной работе двух систем переработки информации: зрительной, создающей образную картину мира, и символической, способной к абстрактному мышлению, к оперированию с понятиями, интегрирующими образы внешнего мира.

Возможность перехода от зрительной картины к ее текстовому (символическому) описанию и от текста к некоторой зрительной картине, составляет, по-видимому, основу того, что называется мышлением. Мы пока еще точно не знаем о том, как хранятся зрительные образы в памяти человека, как они обрабатываются, как они соотносятся с текстами, им соответствующими. Когнитивная графика и занимается приемами соотнесения текстов и зрительных картин через общее представление знаний, интегрирующих текстовые и зрительные образы. Примерами являются программы оживления картин, но не на основе жестких процедур, а в соответствии с некоторыми текстами на ограниченном естественном языке.

Если интерактивная компьютерная графика (ИКГ) реализует две связанные между собой функции: иллюстративную и когнитивную, то одновременный вывод ИКГ-изображений в разные окна дисплея создает у пользователя синтетический полиоконный ИКГ-образ. Иллюстративная функция обеспечивает визуальную адекватность графического образа оригиналу, т. е. визуальную «узнаваемость» оригинала. Когнитивная функция позволяет (при определенных условиях) изображать в наглядной графической форме внутреннее содержание оригинала. Функциональное содержание ИКГ представлено на рис. 3.6.


Рис. 3.6. Функциональное содержание ИКГ.


Эвристические программы повышают "интеллектуальный уровень" машины. Однако программы создания системы "общего интеллекта", т. е. универсальной эвристической программы, не существует. Трудности и неудачи в решении данного вопроса в значительной степени связаны со следующим.

1.Не учитываются в полном объеме реальные гносеологические характеристики человеческого интеллекта, приоритет отдается только выбору. Методы гносеологии включают в себя анализ, сравнение, эксперимент, наблюдение и другие инструменты, которые помогают нам получить достоверные знания.

2.Символы в эвристических программах не имеют интерпретации, отсутствует и содержательно обусловленный выбор. Поэтому в памяти ЭВМ не представлены ни сложная внутренняя структура образа, ни сеть его отношений с другими образами.

3.Вновь поступающая информация не влияет на базу данных, вследствие чего она не используется в решении задачи.

4.Семантика, вложенная в машину, не многоярусная: формальные аналоги категорий не имеют аналогов чувственных образов;

5.Данные, вносимые сегодня в ЭВМ, не имеют базы "целей". В результате этого в совокупные ее функции не включены элементы целеполагания собственно информационных и деятельностных аспектов функционирования интеллектуальных систем.

Основные понятия систем искусственного иттеллекта

Подняться наверх