Читать книгу Логика. Краткий курс - Юрий Васильевич Ивлев - Страница 4

Как решать задачи

Оглавление

Перед нами уже стоит задача. Каков смысл выражения «Как решать задачи»? Что это – вопрос или нет? В конце этого выражения (заглавия) нет ни знака вопроса, ни точки. Читатель может сказать: «Пусть ответит тот, кто написал это». Будет читатель прав или нет?

Как быть, если того, кто это написал, нет поблизости? Нужно использовать имеющееся знание о том, что в заглавиях точка может опускаться, а вопросительный знак – нет. При использовании этого знания смысл заглавия заключается в том, что в тексте излагаются способы решения задач. Если же указанного исходного знания нет, то нужно предположить две возможности понимания заглавия. Первая – названная. Вторая – в тексте речь будет идти о пояснении вопроса «Как решать задачи?», например, о том, какие трудности возникают при решении задач.

Будем говорить о трудностях, которые возникают при решении задач, а также о методах решения.

Некоторые люди плохо решают задачи. По каким причинам?

Первая причина. Для решения задачи нужны определенные знания. В данном случае нужно было знать, что в заглавии точка может не ставиться, если заглавие выражает утверждение. Если же заглавие выражает вопрос, то нужно ставить знак вопроса (?).

Еще примеры.

Первый. Стоянка ограничена бетонными столбами:


Расстояние между столбами по горизонталям и вертикалям – 8 м. Как увеличить площадь стоянки для автомобилей на 50%, не повреждая бетонные столбы? Есть условия: для стоянки автомобиля нужно расстояние длиной 3,5 м; увеличение площади может производиться только на запад, автомобили могут въезжать и выезжать только с севера. Для решения задачи можно использовать знание «площадь прямоугольника равна произведению величины его длины на величину его ширины». Решите задачу.

Второй. Шесть школьников нашли по пять грибов каждый. Сколько всего грибов нашли школьники? Возможны два решения. Первое – умножаем 6 на 5. Второе – производим сложение: 5 + 5 + 5 + 5 + 5 + 5.

Вторая причина. Ученики не понимают смысл задачи. Чтобы понять смысл задачи, нужно выяснить смысловые и предметные значения выражений.

Выражения языка можно рассматривать как знаки. Знак, в таком контексте, ─ это выражение, обозначающее какой-то предмет. Под предметом понимается все, что может быть как-то названо. Примеры знаков: река Волга, кошка. Предметным значением (или просто значением) выражения «река Волга» является сама эта река, а смысловым значением ─ какая-то из информаций о Волге, выраженная в языке, например, информация о том, что это самая большая река в Европе, а также зрительный образ этой реки или какое-то иное представление о Волге. Первый вид смыслового значения (самая большая река в Европе) называется смыслом знака, а второй ─ образным представлением. Образное представление называется также идеей. Знаковую ситуацию можно представить графически:


Предметным значением слова «кошка» является каждая кошка. Что является смысловым значением этого слова? Вряд ли читатель может указать смысл этого слова, если под смыслом понимать выраженную в языке информацию, позволяющую отличать кошек от всех других животных. В биологии такая информация, конечно, есть. Как же мы отличаем кошек от собак и от других животных? ─ На основе зрительного представления.

Каково смысловое значение выражения «потребительная стоимость вещи»? Смысл ─ степень полезности вещи. Образного представления нет.

Таким образом, некоторые знаки имеют смысл и образное представление, другие имеют только образное представление, а третьи только смысл.

Две последние ситуации можно пояснить графически:



Пример. Пусть знаком является слово «кошка». Каждая кошка является значением этого слова. Множество значений называется объемом знака. Объем знака можно изобразить в вид круга, заполненного точками.

Круг, представляющий объем знака «кошка»:


Пусть значением знака является один предмет. Например, значением слова «Россия» является один предмет ─ государство, в котором мы живем.

Объем этого знака ─ множество, состоящее из одного предмета. Графически:


Точки внутри круга можно не ставить.

Представьте графически отношение между объемами выражений «дерево», «береза», «березовый брус».

Задачу нельзя решить, если не уточнить смысловые и предметные значения этих выражений, то есть если из этих слов и словосочетаний не образовать знаки. Под деревом может иметься в виду растение «дерево», а может иметься в виду материал (деревянные доски, брусья и т. д.). То же самое можно понимать и под березой. В общем случае нужно рассмотреть все варианты понимания выражений или спросить у того, кто формулирует задачу, какие знаки выражены словами (или сочетаниями слов), так как знак ─ это выражение, имеющее смысловое значение. Если значениями слов «дерево» и «береза» считать соответствующие растения, то отношения между объемами этих знаков будет представлено схемой:


Два левых круга соответствуют объемам знаков «дерево» и «береза», а правый ─ объему знака «березовый брус».

Третья причина, по которой плохо решают задачи,добавляются новые условия, усложняющие решение.

Пример. У меня в кармане две монеты. В сумме они составляют 3 руб. Какие это монеты? Но одна из них не рубль, как вы сразу подумали. Обычно человек добавляет предпосылку и считает, что и вторая монета не рубль.

Четвертая причинане полностью формулируется условие задачи.

Пример 1. Психиатр проверяет пациента, нет ли у него психического заболевания. Спрашивает: «Как распределить предметы на группы?» На столе лежат гвоздь, нож и яблоко. Пациент отвечает: «В одну группу войдут нож и яблоко, а в другую ─ гвоздь, так как нож и яблоко имеют отношение к еде, а гвоздь к строительству». Психиатр делает запись о заболевании пациента, поскольку считает, что надо было распределить предметы на группы так: одна группа – нож и гвоздь (металлические предметы), а другая – яблоко (не металлический предмет). Кто из них прав?

Чтобы ответить на этот вопрос, полезно познакомиться с логической операцией, которая называется делением.

Деление. Делениеэто выделение частей объема знака (если объем знака включает более одного предмета) или частей значения знака, обозначающего только один предмет, на основе характеристики, называемой основанием деления. Чаще всего знаки, над которыми производится операция деления, выражают понятия, поэтому исходный знак называется делимым понятием, а знаки получаемых частей – членами деления. (Учение логики о понятии изложено ниже.) Если выделяются части объема знака, то деление называется таксономическим, а если выделяются части предмета, то деление называется мереологическим.

В приведенном выше примере требовалось произвести таксономическое деление. Однако основание деления указано не было. Пациент выбрал в качестве основания предназначение предметов, а психиатр – материал, и разделил предметы на металлические и неметаллические. Психиатром было не полностью сформулировано условие задачи. В таком случае нужно спросить того, кто формулирует задачу: «Каково основание деления?», а если спросить нельзя, то сформулировать все возможные основания деления, например, в данном случае, основаниями могут быть (1) материал, из которого состоят предметы, (металлические или неметаллические); (2) цель, для которой предназначены предметы (еда или строительство); (3) происхождение (растительное или нерастительное) и т. д. (Ниже операция деления будет изложена подробнее.)

Пример 2. Имеется одна лодка. Как перевезти через реку волка, козу и капусту при условии, что волк не может находиться в лодке с козой (может ее съесть), а коза не может находиться в лодке с капустой (коза может съесть капусту). Какие условия не сформулированы? Перечислите их.

Замечание. Трудности при решении задач не всегда связаны с пониманием смысла задачи и знанием ее условий. Трудности могут быть вызваны также:

во-первых, тем, что задачи являются проблемными (о том, что такое проблема, речь пойдет ниже), то есть задачами, для которых нужно разработать метод решения,

во-вторых, тем, что при решении нужно проявить сообразительность.

Пример 3. По-видимому, самой знаменитой проблемой первого вида являлась задача о квадратуре круга. Ее формулировка: предъявить квадрат, площадь которого была бы равна площади заданного круга. Софист Антифон, современник Сократа (V в. до н. э.), переформулировал задачу так: вписать в круг квадрат, потом правильный восьмиугольник, потом шестнадцатиугольник и т. д. Поскольку можно построить квадрат, равновеликий любому такому многоугольнику, задача может быть решена, но приближенно. Бризон, тоже современник Сократа, предложил присоединить к вписанным многоугольникам описанные. Проблема решалась многие столетия. В конце концов был получен отрицательный результат – квадрата, площадь которого равна площади данного круга, не существует.

Пример 4. В Геленджике обнаружили дыру в земле. Бросали в нее камни. Не было слышно, как они достигают дна. Привязали за веревку человека, опустили в дыру. От него не было сигнала, чтобы тянули наверх. Забеспокоились. Вытащили, а он мертвый, газом отравился. Как узнать глубину дыры, не опуская в нее человека? Решите задачу.

Для полноты «картины» сформулируем еще один вид задач – задачи, которые решаются подбором ответа.

Пример. Фокин, Савкин и Петраков украли в каждом из сельских дворов 3 курицы. Больше всех украл Фокин – 7 кур, меньше всех Савкин – 3 курицы. Сколько кур украл Петраков? Решение: число кур кратно 3; Петраков не мог украсть более 6 кур и менее 4; если предположить, что он украл 6 кур, то общее число украденных кур – 16, которое не делится на 3; если предположить, что четыре, то общее число украденных кур – 14, которое тоже не делится на 3; остается число 5; 7 + 3 + 5 = 15; 15 на 3 делится.

Логика. Краткий курс

Подняться наверх