Читать книгу 21 урок для XXI века - Юваль Ной Харари, Paul Shapiro - Страница 8
Часть I. Технологический вызов
2. Работа
Алгоритм по имени Моцарт
ОглавлениеМаловероятно, что искусственный интеллект и роботы полностью уничтожат целые отрасли – по крайней мере, в ближайшее время. Будет автоматизирован в основном узкий диапазон монотонных рабочих операций. Гораздо труднее заменить машинами представителей творческих профессий, в которых необходимо использовать широкий набор навыков и которые требуют умения действовать в непредсказуемых ситуациях. Вернемся к здравоохранению. Многие врачи практически полностью заняты обработкой информации: они собирают данные о здоровье, анализируют их, ставят диагноз. А вот медсестра должна обладать хорошими моторными и эмоциональными навыками, чтобы безболезненно сделать укол, сменить повязку или успокоить буйного пациента. Поэтому, скорее всего, семейный врач с искусственным интеллектом на нашем смартфоне появится на несколько десятилетий раньше, чем мы увидим надежного робота-медсестру[18]. По всей вероятности, сфера социального обслуживания – забота о больных, детях и стариках – еще долго останется в ведении человека. Люди живут все дольше, а детей у них становится меньше, и поэтому уход за пожилыми будет одним из самых быстрорастущих секторов на рынке труда для человека.
Плохо поддается автоматизации не только уход за больными и немощными, но и творческий процесс. Нам больше не нужны люди, продающие музыку: мы можем напрямую загрузить ее из iTunes, – но композиторы, музыканты, певцы и диджеи у нас по-прежнему из плоти и крови. Мы полагаемся на творческие способности людей не только в сочинении новой музыки, но и в выборе из невероятного количества доступных вариантов.
И все же автоматизации не избежит ни одна сфера – даже искусство. В современном мире искусство обычно ассоциируют с человеческими эмоциями. Мы склонны считать, что художник дает выход неким внутренним психологическим процессам, что цель искусства – помочь нам осознать свои эмоции или пробудить в нас новые чувства. Поэтому, анализируя искусство, мы пытаемся судить о нем по эмоциональному воздействию на аудиторию. Но если в основе искусства лежат чувства, что произойдет, когда внешние алгоритмы научатся понимать человеческие эмоции и манипулировать ими лучше, чем Шекспир, Фрида Кало или Бейонсе?
В конце концов, эмоции – вовсе не мистическое явление, а продукт биохимических процессов. Поэтому в недалеком будущем алгоритм машинного обучения сможет анализировать биометрические данные от датчиков внутри и на поверхности вашего тела, определять ваш тип личности, следить за сменой настроения, а затем вычислять эмоциональное воздействие, которое окажет на вас та или иная композиция – или даже музыкальная тональность[19].
Вероятно, из всех видов искусства для анализа больших данных лучше всего подходит музыка, поскольку и она сама, и результат ее воздействия поддаются точному математическому описанию. На входе – математические диаграммы звуковых волн, на выходе – электрохимические диаграммы нейронных бурь. Через несколько десятилетий алгоритм, проанализировавший миллионы мелодий, научится предсказывать, какую реакцию вызовет любая из них[20].
Предположим, вы только что поссорились с близким человеком. Алгоритм, управляющий аудиосистемой в вашем доме, сразу же заметит ваше эмоциональное возбуждение и, основываясь на том, что он знает о вас лично и о человеческой психологии в целом, включит композиции, соответствующие вашему мрачному настроению и созвучные вашим переживаниям. Эти мелодии не обязательно подойдут другим, но для вашего типа личности они идеальны. После того как алгоритм поможет вам осознать глубину ваших страданий, он включит единственную в мире песню, которая способна вас утешить – возможно, потому, что ваше подсознание ассоциирует ее с воспоминаниями о счастливом детстве, хотя вы об этом даже не догадываетесь. Ни один диджей никогда не сравняется в этом умении с искусственным интеллектом.
Вы можете возразить, что таким образом искусственный интеллект убьет интуицию и запрет нас внутри тесного музыкального кокона, сотканного из предыдущих предпочтений. А как насчет того, чтобы ознакомиться с новыми музыкальными стилями? Не проблема. Вы легко сможете запрограммировать алгоритм так, чтобы в 5 % случаев его выбор был абсолютно случайным – он будет без предупреждения проигрывать вам записи индонезийского оркестра гамелан, оперы Россини или последние южнокорейские хиты. Со временем, регистрируя вашу реакцию, искусственный интеллект сумеет даже вычислить оптимальный уровень случайности, который будет обеспечивать необходимую новизну, не вызывая раздражения: например, понизит его до 3 % или повысит до 8 %.
Другое возможное возражение – непонятно, как алгоритм будет устанавливать «эмоциональную цель». Если вы поссорились с другом, к каким эмоциям должен подталкивать вас алгоритм – к печали или к радости? Будет ли он слепо придерживаться жесткой шкалы «хороших» и «плохих» эмоций? А что, если в жизни бывают минуты, когда грусть полезна? Тот же вопрос можно адресовать музыкантам и диджеям. Однако алгоритм может предложить много интересных решений и для этой задачи.
Одно из них – просто предоставить решать пользователю. Вы можете выбрать желательные эмоции, а алгоритм будет следовать вашим указаниям. Иногда вам хочется жалеть себя, иногда – прыгать от радости. Алгоритм будет покорно вам подчиняться. Он научится распознавать ваши желания даже тогда, когда вы сами плохо их понимаете.
А если вы не хотите полагаться на себя, то можете попросить алгоритм следовать рекомендациям любого выдающегося психолога, которому доверяете. Если вы расстанетесь с близким человеком, алгоритм проведет вас через пять стадий переживания горя: сначала поможет отрицать случившееся, проигрывая Don’t Worry, Be Happy Бобби Макферрина, потом подстегнет ваш гнев песней Аланис Мориссетт Yo u Oughta Know, заставит торговаться с помощью Ne Me Quitte Pas Жака Бреля и Come Back and Stay Пола Янга, повергнет в депрессию композицией Адель Someone Like You и Hello и, наконец, поможет принять неизбежное, включив I Will Survive Глории Гейнор.
Следующий шаг для алгоритма – работать с самими песнями и мелодиями, слегка меняя их, чтобы адаптировать к запросам клиента. Возможно, вам не нравится небольшой фрагмент в целом отличной песни. Алгоритм знает об этом, потому что ваш сердечный ритм меняется, а уровень окситоцина падает, когда вы слышите раздражающий вас кусок. И он может переписать или отредактировать ноты, которые вам не по душе.
Когда-нибудь алгоритмы научатся сочинять целые мелодии, играя на человеческих эмоциях, словно на клавишах фортепиано. Используя ваши биометрические данные, алгоритм сможет даже писать персонализированную музыку, которую сможете полностью понять и прочувствовать только вы.
Часто говорят, что люди воспринимают искусство потому, что находят в нем себя. Мы увидим удивительные и несколько пугающие результаты, если, скажем, Facebook начнет создавать персонализированные шедевры на основе всего, что он о вас знает. Если вас бросит партнер, Facebook утешит вас песней об этом конкретном негодяе, а не о каком-то незнакомце, разбившем сердце Адель или Аланис Мориссетт. Песня даже напомнит вам о реальных эпизодах ваших взаимоотношений, о которых во всем мире знаете только вы двое.
Конечно, персонализированное искусство может и не войти в моду – не исключено, что люди по-прежнему будут предпочитать знакомые хиты, которые нравятся всем. (Как петь с друзьями песни, известные только вам, или танцевать всем вместе под такую музыку?) Но в создании мировых хитов алгоритмы способны проявить еще большую гибкость, чем в сочинении персональной музыки. Используя массивы биометрических данных миллионов людей, алгоритм сможет выяснить, на какие биохимические «кнопки» нужно нажать, чтобы будущий хит захватил все танцполы мира. Если искусство действительно призвано вызывать у человека эмоции (или манипулировать ими), то музыкантам-людям будет очень трудно или даже невозможно тягаться с алгоритмом: ведь они не в состоянии так глубоко понять главный инструмент, на котором играют, – свою биохимическую систему.
Появится ли в результате великое искусство? Все зависит от того, что мы вкладываем в это понятие. Если красота действительно в глазах смотрящего (и в ушах слушающего) и если клиент всегда прав, то у биометрических алгоритмов есть шанс создать лучшие шедевры в истории. Если искусство – это нечто более глубокое, чем человеческие эмоции, и оно должно выражать некую истину, не имеющую отношения к нашим биохимическим колебаниям, то биометрические алгоритмы, возможно, будут не слишком хорошими художниками. Как, впрочем, и большинство людей. Чтобы выйти на музыкальный рынок и потеснить многих композиторов и исполнителей, алгоритму не обязательно писать музыку лучше Чайковского. Для начала достаточно превзойти Бритни Спирс.
18
Michael Chui, James Manyika and Mehdi Miremadi, ‘Where Machines Could Replace Humans – and Where Tey Can’t (Yet)’, McKinsey Quarterly (2016), http://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/where-machines-could-replace-humans-and-where-they-cant-yet, accessed 1 March 2018.
19
Wu Youyou, Michal Kosinski and David Stillwell, ‘Computer-based personality judgments are more accurate than those made by humans’, PANS, vol. 112 (2014), 1036–1038.
20
Stuart Dredge, ‘A I and music: will we be slaves to the algorithm?’ Guardian, 6 August 2017, https://www.theguardian.com/technology/2017/aug/06/artificial-intelligence-and-will-we-be-slaves-to-the-algorithm, accessed 15 October 2017. Обзорный анализ методов см.: Jose David Fernández and Francisco Vico, ‘A I Methods in Algorithmic Composition: A Comprehensive Survey’, Journal of Artifcial Intelligence Research 48 (2013), 513–582.