Читать книгу Practical Power Plant Engineering - Zark Bedalov - Страница 4

List of Illustrations

Оглавление

1 Chapter 1Figure 1.1 Project development.Figure 1.2 Cost of change.Figure 1.3 Motor wiring diagram with PLC module.Figure 1.4 Motor wiring diagram to DeviceNet communication module.Figure 1.5 Three‐phase tester.Figure 1.6 Plant handover procedure.Figure 1.7 Plant interlocks, hard wired and software.Figure 1.8 Typical LCOE cost ranges and weighted averages for electricity ge...

2 Chapter 2Figure 2.1 Part of a plant one line diagram.Figure 2.2 Part of plant flow diagram.Figure 2.3 A part of a P&ID diagram.Figure 2.4 Large oil filled transformer.Figure 2.5 245 kV circuit breaker.Figure 2.6 Double and single incomer diagram.Figure 2.7 Key one‐line diagram.Figure 2.8 Plant MV switchgear.Figure 2.9 4.16 kV motor controller assembly.Figure 2.10 Part of LV switchgear.Figure 2.11 Switchgear breaker interlocks.Figure 2.12 Distribution line.Figure 2.13 Plant phasing diagram.Figure 2.14 Standby generator.Figure 2.15 Lightning arrester.Figure 2.16 BIL impulse wave shape.

3 Chapter 3Figure 3.1 (a) MV switchgear and (b) circuit breaker.Figure 3.2 Arc flash accident.Figure 3.3 Personal protective equipment.Figure 3.4 MV MCC controller assembly.Figure 3.5 Motor protection chart.Figure 3.6 MV motor controller basic circuit.Figure 3.7 Unit substations for LV distribution.Figure 3.8 (a) LV substation – double ended. (b) LV draw‐out circuit breaker...Figure 3.9 LV breaker adjustable operating curvesFigure 3.10 LV MCC assembly.Figure 3.11 MCC starter bucket.Figure 3.12 A family of circuit breakers [8].Figure 3.13 Breaker time – current characteristic.Figure 3.14 Electronic overload.Figure 3.15 HMCP adjustable breakers.Figure 3.16 Typical motor protection with breakers.Figure 3.17 Motor protected by Fuse.

4 Chapter 4Figure 4.1 Permafrost temperature.Figure 4.2 HV outdoor substation.Figure 4.3 Concrete PVC duct bank.Figure 4.4 Cable duct installation.Figure 4.5 (a and b) Soil heat resistivity charts.Figure 4.6 Prefabricated electrical room.Figure 4.7 Unistrut channels.Figure 4.8 Transformers, fire barrier walls.Figure 4.9 Plant control room.Figure 4.10 CR tile floor.

5 Chapter 5Figure 5.1 Neutral point solid grounding.Figure 5.2 Neutral point resistance grounding.Figure 5.3 Method of grounding and equivalent circuits.Figure 5.4 Unit G grounding.Figure 5.5 Grounding Zg transformer.Figure 5.6 Zg grounding transformer.Figure 5.7 Fault currents in Y/Δ transformer.

6 Chapter 6Figure 6.1 (a) Wenner four‐pin method and (b) three‐point fall of potential ...Figure 6.2 Part of plant grounding grid (mesh).Figure 6.3 Step and touch potential.Figure 6.4 GPR equipotential contours.Figure 6.5 Cadweld underground connections.Figure 6.6 Cadweld connections.Figure 6.7 Rebar connection.Figure 6.8 Mechanical crimp connections.Figure 6.9 Motor base grounding.Figure 6.10 Fence grounding.

7 Chapter 7Figure 7.1 ATS.Figure 7.2 (a) Battery power pack, (b) exit light, and (c) exit light with l...Figure 7.3 Illuminance level (an average illumination of 300 lx was required...Figure 7.4 Light distribution (a) for indoors and (b) for street lighting do...Figure 7.5 Photometric cone diagram.Figure 7.6 Lighting transformers.Figure 7.7 Fluorescent fixture with glare diffuser.Figure 7.8 (a) Industrial fluorescent, (b) roadway LED, and (c) hi‐bay HPS....Figure 7.9 Lighting panel.Figure 7.10 Receptacles (outlets).Figure 7.11 Welding outlet.Figure 7.12 Lamp CRI color rendering code.Figure 7.13 Light color temperature.Figure 7.14 Light spectra.Figure 7.15 Fluorescent, (a) cool and (b) warm.Figure 7.16 LPS lamp.Figure 7.17 LED technology.Figure 7.18 LED beams.

8 Chapter 8Figure 8.1 Battery (a) discharge and (b) charge process.Figure 8.2 Typical battery ampere‐hour capacity and hourly discharge..Figure 8.3 Internal plate connections.Figure 8.4 Battery life and temperature dependency.Figure 8.5 Battery rack.Figure 8.6 Charger and UPS.Figure 8.7 DC system connection diagram.Figure 8.8 Continuous UPS.

9 Chapter 9Figure 9.1 Multicircuit overhead line.Figure 9.2 ACSR conductor.Figure 9.3 (a–d) Types of plant distribution.Figure 9.4 Circuit transition point.Figure 9.5 Relationship between resistance, reactance, and impedance for con...Figure 9.6 Line loading.Figure 9.7 Voltage drop for line load at end of line.Figure 9.8 Voltage drop for not equally distributed load.Figure 9.9 Voltage drop for equally distributed load.Figure 9.10 Line loss calculations.Figure 9.11 ABC cable installation.Figure 9.12 ABC cable composition.

10 Chapter 10Figure 10.1 Arresters in HV substation.Figure 10.2 Lightning strike.Figure 10.3 World isokeraunic map by NASA.Figure 10.4 Test voltage and current waveshapes.Figure 10.5 Impulse wave shape.Figure 10.6 Impulse test connection.Figure 10.7 Ground flash density of USA.Figure 10.8 Equipment withstand capability.Figure 10.9 MV pole arrester.Figure 10.10 MV arrester performance chart.Figure 10.11 VI chart of a ZnO arrester for 420 kV system with earthed neut...Figure 10.12 Lightning aerial base.Figure 10.13 Air terminal height.Figure 10.14 Protection of low‐rise buildings ≤7.6 m.Figure 10.15 Protection of buildings >15 m.Figure 10.16 Cadweld underground connections.

11 Chapter 11Figure 11.1 World voltage and frequency map.Figure 11.2 CCW phase sequence.Figure 11.3 Three phase power.Figure 11.4 (a, b) Phase sequence based on rotor rotation.Figure 11.5 Changes due to phase sequence error. UAT = unit auxiliary transf...Figure 11.6 World plug map by type.Figure 11.7 World plug and socket types.

12 Chapter 12Figure 12.1 3c+g (Three conductors + ground) LV power cable.Figure 12.2 Cable electrical field.Figure 12.3 Cables with armor and jacket.Figure 12.4 Cable protection by circuit breaker (CB).Figure 12.5 Cable short circuit thermal withstand.Figure 12.6 MV power cables.Figure 12.7 300 kV cable.Figure 12.8 (a) Cable gland, (b) conductor lugs, (c) one phase stress cone, ...Figure 12.9 Spade lug.Figure 12.10 Control cables.Figure 12.11 Ethernet cable.Figure 12.12 DeviceNet cable.Figure 12.13 Fiber optic (FO) cables.Figure 12.14 Ladder tray.Figure 12.15 Cable tray installation.Figure 12.16 (a) Cable fill, (b) spacing, and (c) mixing.Figure 12.17 Bus duct.Figure 12.18 Cable bus assembly.Figure 12.19 Cable bus installation.

13 Chapter 13Figure 13.1 Motor partially loaded performance.Figure 13.2 Reactive power flows [2].Figure 13.3 Typical motor loading.Figure 13.4 pf correction.Figure 13.5 Generator excited at pf change.Figure 13.6 Harmonics.

14 Chapter 14Figure 14.1 Motor torque characteristics.Figure 14.2 NEMA design code.Figure 14.3 NEMA “Standard T Frame” dimensions. Source: [1].Figure 14.4 IEC “Standard Frame” dimensions. Source: [1].Figure 14.5 Motor starter sizes.Figure 14.6 The most common motor enclosures. (a) TEFC, (b) TENV, (c) explos...Figure 14.7 Sag mill.Figure 14.8 Motor torque characteristic.Figure 14.9 Soft start comparison.Figure 14.10 Motor efficiencies by IEC.

15 Chapter 15Figure 15.1 VFD cabinets.Figure 15.2 VFD: AC → → DC → AC conversion.Figure 15.3 VFD PWM modulation.Figure 15.4 VFD output voltage.Figure 15.5 (a) VSI and (b) CSI topology.Figure 15.6 Motor start on VFD.Figure 15.7 Power and torque–speed relationship.Figure 15.8 Variable/constant torque characteristics.Figure 15.9 Displacement pumps.Figure 15.10 Regenerative VFDs.Figure 15.11 Regenerative drives options.Figure 15.12 IGBT and diode.Figure 15.13 Nonlinear waveform.

16 Chapter 16Figure 16.1 Window type CTs, ratios.Figure 16.2 Polarity markings and current flows.Figure 16.3 Transformer differential protection.Figure 16.4 Time dial settings.Figure 16.5 Transformer protection functional diagram. MFM, multifunction me...Figure 16.6 Generator protection functional diagram.Figure 16.7 Motor protection functional diagram. WNDGs, windings; BRNGs, bea...Figure 16.8 Δ side currents for Y side faults.Figure 16.9 Synchrocheck relay.Figure 16.10 Coordination with fuse.Figure 16.11 Transformer ground restricted protection, 50/51GR.Figure 16.12 (a, b) Motor ground fault protection.Figure 16.13 (a, b) Generator ground fault protection.Figure 16.14 Differential relay 3 slope setting.Figure 16.15 Flex logic for controlling MVAR flow on line.Figure 16.16 Inverse overcurrent protection.Figure 16.17 Time graded relay coordination.Figure 16.18 Time–current graded protection.Figure 16.19 Trip lockout (86) relay.Figure 16.20 Self‐reset trip relay.Figure 16.21 Trip supervisory relay.

17 Chapter 17Figure 17.1 Old relay logic panel.Figure 17.2 PLC with I/O cards by Rockwell.Figure 17.3 PLC processing sequence.Figure 17.4 Part of PLC ladder program.Figure 17.5 PLC scan.Figure 17.6 Interposing relay (IR).Figure 17.7 Analog controls.Figure 17.8 Scaling list.Figure 17.9 An HMI screen for an electrical one‐line diagram.Figure 17.10 Plant automation network architecture.Figure 17.11 Network topology [4].Figure 17.12 UTP cable.Figure 17.13 Patch box for Ethernet IP.Figure 17.14 Ethernet TCP/IP network.Figure 17.15 Webb HMI faceplate.Figure 17.16 SCADA powerplant basic architecture.Figure 17.17 SCADA with DNP3 transmission.

18 Chapter 18Figure 18.1 Power plant, smaller units. GSUT, Generator step‐up transformer;...Figure 18.2 Power plant, larger units.Figure 18.3 Hydro generator: 147 MVA (1 pu), 0.85 lag/0.9 lead power factor....Figure 18.4 Generator steady state limits.Figure 18.5 Open and short circuit graph.Figure 18.6 V Curves; field current for varied pf.Figure 18.7 Short circuit ratio.Figure 18.8 Generator impedances X d, X q.Figure 18.9 (a, b) Generator transient conditions. [1]Figure 18.10 Governor frequency – power control, hydro unit.Figure 18.11 Governor typical transfer function.Figure 18.12 Generator static exciter board.Figure 18.13 Static excitation diagram ( with brushes).Figure 18.14 Brushless rotating exciter with PMG.Figure 18.15 Generator circuit breaker.Figure 18.16 Result of cavitation.

19 Chapter 19Figure 19.1 Regional dispatch center.Figure 19.2 Two unit plant.Figure 19.3 Load sharing on droop.Figure 19.4 ISO and droop operation.Figure 19.5 Voltage droop.Figure 19.6 Island mode, single unit.Figure 19.7 Grid, single unit.Figure 19.8 Island mode droop.Figure 19.9 Cross current compensation.Figure 19.10 Line power transfer.Figure 19.11 MVAR exchange.

20 Chapter 20Figure 20.1 A remote DG power plant.Figure 20.2 DG plant basic one line diagram.Figure 20.3 Rankine cycle.Figure 20.4 A diesel engine energy tree.Figure 20.5 Pressurized water system.Figure 20.6 Steam/water WHR.

21 Chapter 21Figure 21.1 Failure rates.Figure 21.2 Bathtub mortality.Figure 21.3 Block diagrams.Figure 21.4 Single pump operation. STR = starter, SOL = solenoid valve.Figure 21.5 Serial/parallel operating system.Figure 21.6 “m out of n” system.Figure 21.7 Cyclone separatorFigure 21.8 Piper alpha rig catastrophe.Figure 21.9 Common mode parallel system.

22 Chapter 22Figure 22.1 Fire notifying devices.Figure 22.2 Smoke detector.Figure 22.3 Pull station.Figure 22.4 Fire alarm panel.Figure 22.5 Sprinkler head.Figure 22.6 Wet pipe sprinkler.Figure 22.7 Gas cylinders.Figure 22.8 VESDA installation.Figure 22.9 Hydrants and fire hose.Figure 22.10 Hand extinguishers.Figure 22.11 Vent louvers.Figure 22.12 Deluge system.Figure 22.13 Deluge system in operation.Figure 22.14 Diesel fire pump.Figure 22.15 Pump controller.

23 Chapter 23Figure 23.1 Buried pipe corrosion.Figure 23.2 (a, b) Protection by sacrificial anode.Figure 23.3 Groundbed with sacrificial nodes.Figure 23.4 Impressed current installation.Figure 23.5 Impressed current installation with rectifier.Figure 23.6 Rectifier transformers.Figure 23.7 Boat hull protection.Figure 23.8 Ship impressed current.Figure 23.9 Cu terminal corrosion.

24 Chapter 24Figure 24.1 Plant phasing diagram.Figure 24.2 Transformer winding configurations.Figure 24.3 Tap Changer on Δ‐Y transformer.Figure 24.4 Dry type transformer.Figure 24.5 Motor WPI type.Figure 24.6 IPB bus duct (a, b).Figure 24.7 Phase braid connectors.

25 Chapter 25Figure 25.1 Solar resource, Europe 1.Figure 25.2 Insolation in kWh/m2/yr. DNI Index [2].Figure 25.3 Photovoltaic technology [3].Figure 25.4 Third multijunction photovoltaic.Figure 25.5 (a, b) The AM1.5 solar spectrum and the parts of the spectrum [6...Figure 25.6 PV panels [5].Figure 25.7 Dual tracker panels [5].Figure 25.8 Alamosa [5].Figure 25.9 CSP tower plant [5].Figure 25.10 Crescent dunes tower CSP [5,9].Figure 25.11 Parabolic mirror model [11].Figure 25.12 Fresnel mirror model [12].Figure 25.13 Solar reserve: crescent dunes solar [5,9].Figure 25.14 Puerto Errado, Fresnel model.Figure 25.15 A row of parabolic mirrors [5].Figure 25.16 Solana AZ, salt storage plant [15].Figure 25.17 Cost of large batteries.Figure 25.18 Tesla 100 MW storage battery.

26 Chapter 26Figure 26.1 Offshore 5 MW turbines.Figure 26.2 Single blade in transport.Figure 26.3 Wind rose.Figure 26.4 Wind tunnel flow.Figure 26.5 Power coefficient Cp, tip speed ratio (TSR) λ.Figure 26.6 (a, b) Wind energy distribution and captured.Figure 26.7 Turbulence daily chart.Figure 26.8 Wind standards.Figure 26.9 Fixed speed turbine generator.Figure 26.10 In‐line conversion speed conversion.Figure 26.11 Asynchronous DFIG model.Figure 26.12 Historical growth.Figure 26.13 Vesta installation.Figure 26.14 Vertical axis model.Figure 26.15 Typical farm project. MVARs required.Figure 26.16 Desert environment.Figure 26.17 Nacelle and blade, hub, hub bearing.Figure 26.18 Renewable energy capital cost comparison.Figure 26.19 Energy cents/kWh levelized cost comparison.

Practical Power Plant Engineering

Подняться наверх