Читать книгу Autonomous Airborne Wireless Networks - Группа авторов - Страница 26

Bibliography

Оглавление

1 1 Zeng, Y., Zhang, R., and Lim, T.J. (2016). Wireless communications with unmanned aerial vehicles: opportunities and challenges. IEEE Communications Magazine 54 (5): 36–42.

2 2 Qualcomm Technologies Inc. (2016). Leading the World to 5G: Evolving Cellular Technologies for Safer Drone Operation. Technical report. Qualcomm.

3 3 Patterson, T. (2015). Google, Facebook, SpaceX, OneWeb plan to beam internet everywhere. https://edition.cnn.com/2015/10/30/tech/pioneers-google-facebook-spacex-oneweb-satellite-drone-balloon-internet/index.html (accessed 08 March 2021).

4 4 Al‐Hourani, A., Kandeepan, S., and Jamalipour, A. (2014). Modeling air‐to‐ground path loss for low altitude platforms in urban environments. 2014 IEEE Global Communications Conference, pp. 2898–2904.

5 5 Fotouhi, A., Qiang, H., Ding, M. et al. (2019). Survey on UAV cellular communications: practical aspects, standardization advancements, regulation, and security challenges. IEEE Communications Surveys Tutorials 21 (4): 3417–3442.

6 6 Molisch, A. (2011). Wireless Communications. Wiley ‐ IEEE.

7 7 3GPP (2017). Study on Enhanced LTE Support for Aerial Vehicles. Technical report, 3rd Generation Partnership Project 3GPP.

8 8 Yanmaz, E., Kuschnig, R., and Bettstetter, C. (2011). Channel measurements over 802.11a‐based UAV‐to‐ground links. 2011 IEEE GLOBECOM Workshops (GC Wkshps), pp. 1280–1284.

9 9 Yanmaz, E., Kuschnig, R., and Bettstetter, C. (2013). Achieving air‐ground communications in 802.11 networks with three‐dimensional aerial mobility. 2013 Proceedings IEEE INFOCOM, pp. 120–124.

10 10 Ahmed, N., Kanhere, S.S., and Jha, S. (2016). On the importance of link characterization for aerial wireless sensor networks. IEEE Communications Magazine 54 (5): 52–57.

11 11 Khawaja, W., Guvenc, I., and Matolak, D. (2016). UWB channel sounding and modeling for UAV air‐to‐ground propagation channels. 2016 IEEE Global Communications Conference (GLOBECOM), pp. 1–7.

12 12 Newhall, W.G., Mostafa, R., Dietrich, C. et al. (2003). Wideband air‐to‐ground radio channel measurements using an antenna array at 2 GHz for low‐altitude operations. IEEE Military Communications Conference, 2003. MILCOM 2003, Volume 2, pp. 1422–1427.

13 13 Tu, H.D. and Shimamoto, S. (2009). A proposal of wide‐band air‐to‐ground communication at airports employing 5‐GHz band. 2009 IEEE Wireless Communications and Networking Conference, pp. 1–6.

14 14 Matolak, D.W. and Sun, R. (2017). Air‐ground channel characterization for unmanned aircraft systems‐part III: the suburban and near‐urban environments. IEEE Transactions on Vehicular Technology 66 (8): 6607–6618.

15 15 Sun, R. and Matolak, D.W. (2017). Air‐ground channel characterization for unmanned aircraft systems part II: Hilly and mountainous settings. IEEE Transactions on Vehicular Technology 66 (3): 1913–1925.

16 16 Meng, Y.S. and Lee, Y.H. (2011). Measurements and characterizations of air‐to‐ground channel over sea surface at C‐band with low airborne altitudes. IEEE Transactions on Vehicular Technology 60 (4): 1943–1948.

17 17 Al‐Hourani, A., Kandeepan, S., and Lardner, S. (2014). Optimal lap altitude for maximum coverage. IEEE Wireless Communications Letters 3 (6): 569–572.

18 18 Bor‐Yaliniz, R.I., El‐Keyi, A., and Yanikomeroglu, H. (2016). Efficient 3‐D placement of an aerial base station in next generation cellular networks. 2016 IEEE International Conference on Communications (ICC), pp. 1–5.

19 19 Bor‐Yaliniz, I. and Yanikomeroglu, H. (2016). The new frontier in ran heterogeneity: multi‐tier drone‐cells. IEEE Communications Magazine 54 (11): 48–55.

20 20 Hayajneh, A.M., Zaidi, S.A.R., McLernon, D.C., and Ghogho, M. (2016). Drone empowered small cellular disaster recovery networks for resilient smart cities. 2016 IEEE International Conference on Sensing, Communication and Networking (SECON Workshops), pp. 1–6.

21 21 Gomez, K., Hourani, A., Goratti, L. et al. (2015). Capacity evaluation of aerial LTE base‐stations for public safety communications. 2015 European Conference on Networks and Communications (EuCNC), pp. 133–138.

22 22 Chen, M., Mozaffari, M., Saad, W. et al. (2017). Caching in the sky: proactive deployment of cache‐enabled unmanned aerial vehicles for optimized quality‐of‐experience. IEEE Journal on Selected Areas in Communications 35 (5): 1046–1061.

23 23 Challita, U. and Saad, W. (2017). Network formation in the sky: unmanned aerial vehicles for multi‐hop wireless backhauling. GLOBECOM 2017 ‐ 2017 IEEE Global Communications Conference, pp. 1–6.

24 24 Kalantari, E., Yanikomeroglu, H., and Yongacoglu, A. (2016). On the number and 3D placement of drone base stations in wireless cellular networks. 2016 IEEE 84th Vehicular Technology Conference (VTC‐Fall).

25 25 Shakhatreh, H., Khreishah, A., Chakareski, J. et al. (2016). On the continuous coverage problem for a swarm of UAVs. 2016 IEEE 37th Sarnoff Symposium, pp. 130–135.

26 26 Azari, M.M., Rosas, F., Chen, K., and Pollin, S. (2016). Joint sum‐rate and power gain analysis of an aerial base station. 2016 IEEE Globecom Workshops (GC Wkshps), pp. 1–6.

27 27 Hayajneh, A.M., Zaidi, S.A.R., McLernon, D.C., and Ghogho, M. (2016). Optimal dimensioning and performance analysis of drone‐based wireless communications. 2016 IEEE Globecom Workshops (GC Wkshps), pp. 1–6.

28 28 Jia, S. and Zhang, L. (2017). Modelling unmanned aerial vehicles base station in ground‐to‐air cooperative networks. IET Communications 11 (8): 1187–1194.

29 29 Mozaffari, M., Saad, W., Bennis, M., and Debbah, M. (2016). Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage. IEEE Communications Letters 20 (8): 1647–1650.

30 30 Mozaffari, M., Saad, W., Bennis, M., and Debbah, M. (2015). Drone small cells in the clouds: design, deployment and performance analysis. In 2015 IEEE Global Communications Conference (GLOBECOM), pp. 1–6.

31 31 Mozaffari, M., Saad, W., Bennis, M., and Debbah, M. (2017). Mobile unmanned aerial vehicles (UAVs) for energy‐efficient internet of things communications. IEEE Transactions on Wireless Communications 16 (11): 7574–7589.

32 32 Azari, M.M., Rosas, F., Chen, K., and Pollin, S. (2018). Ultra reliable UAV communication using altitude and cooperation diversity. IEEE Transactions on Communications 66 (1): 330–344.

33 33 Alzenad, M., El‐Keyi, A., Lagum, F., and Yanikomeroglu, H. (2017). 3‐D placement of an unmanned aerial vehicle base station (UAV‐BS) for energy‐efficient maximal coverage. IEEE Wireless Communications Letters 6 (4): 434–437.

34 34 Alzenad, M., El‐Keyi, A., and Yanikomeroglu, H. (2018). 3‐D placement of an unmanned aerial vehicle base station for maximum coverage of users with different QoS requirements. IEEE Wireless Communications Letters 7 (1): 38–41.

35 35 Khuwaja, A.A., Zheng, G., Chen, Y., and Feng, W. (2019). Optimum deployment of multiple UAVs for coverage area maximization in the presence of co‐channel interference. IEEE Access 7: 85203–85212.

36 36 International Telecommunication Union (ITU) (2003). Propagation Data and Prediction Methods for the Design of Terrestrial Broadband Millimetric Radio Access Systems. Technical report. International Telecommunication Union (ITU).

37 37 3GPP (2018). Study on Channel Model for Frequencies from 0.5 to 100 GHz. Technical report. 3rd Generation Partnership Project (3GPP).

38 38 Wentz, M. and Stojanovic, M. (2015). A MIMO radio channel model for low‐altitude air‐to‐ground communication systems. 2015 IEEE 82nd Vehicular Technology Conference (VTC2015‐Fall), pp. 1–6.

39 39 Gulfam, S.M., Nawaz, S.J., Ahmed, A., and Patwary, M.N. (2016). Analysis on multipath shape factors of air‐to‐ground radio communication channels. 2016 Wireless Telecommunications Symposium (WTS), pp. 1–5.

40 40 Zeng, L., Cheng, X., Wang, C., and Yin, X. (2017). Second order statistics of non‐isotropic UAV ricean fading channels. 2017 IEEE 86th Vehicular Technology Conference (VTC‐Fall), pp. 1–5.

41 41 Blandino, S., Kaltenberger, F., and Feilen, M. (2015). Wireless channel simulator testbed for airborne receivers. 2015 IEEE Globecom Workshops (GC Wkshps), pp. 1–6.

42 42 Ksendzov, A. (2016). A geometrical 3D multi‐cluster mobile‐to‐mobile MIMO channel model with rician correlated fading. 2016 8th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), pp. 191–195.

43 43 Gao, X., Chen, Z., and Hu, Y. (2013). Analysis of unmanned aerial vehicle MIMO channel capacity based on aircraft attitude. WSEAS Transactions on Information Science and Applications 10 (2): 58–67.

44 44 Yang, J., Liu, P., and Mao, H. (2011). Model and simulation of narrowband ground‐to‐air fading channel based on Markov process. 2011 International Conference on Network Computing and Information Security, Volume 1, pp. 142–146. https://doi.org/10.1109/NCIS.2011.37.

45 45 Simunek, M., Fontán, F.P., and Pechac, P. (2013). The UAV low elevation propagation channel in urban areas: statistical analysis and time‐series generator. IEEE Transactions on Antennas and Propagation 61 (7): 3850–3858.

46 46 Cid, E.L., Alejos, A.V., and Sanchez, M.G. (2016). Signaling through scattered vegetation: empirical loss modeling for low elevation angle satellite paths obstructed by isolated thin trees. IEEE Vehicular Technology Magazine 11 (3): 22–28.

47 47 Matolak, D.W. and Sun, R. (2016). Air‐ground channels for UAS: summary of measurements and models for L‐ and C‐bands. 2016 Integrated Communications Navigation and Surveillance (ICNS), p. 8B2‐1–8B2‐11.

48 48 Sun, R., Matolak, D.W., and Rayess, W. (2017). Air‐ground channel characterization for unmanned aircraft systems‐part IV: airframe shadowing. IEEE Transactions on Vehicular Technology 66 (9): 7643–7652.

49 49 Kosmerl, J. and Vilhar, A. (2014). Base stations placement optimization in wireless networks for emergency communications. 2014 IEEE International Conference on Communications Workshops (ICC), pp. 200–205.

50 50 Valiulahi, I. and Masouros, C. (2020). Multi‐UAV deployment for throughput maximization in the presence of co‐channel interference. IEEE Internet of Things Journal 8 (5: 3605–3618.

51 51 Zhao, N., Pang, X., Li, Z. et al. (2019). Joint trajectory and precoding optimization for UAV‐assisted NOMA networks. IEEE Transactions on Communications 67 (5): 3723–3735.

52 52 Zeng, Y., Zhang, R., and Lim, T.J. (2016). Throughput maximization for UAV‐enabled mobile relaying systems. IEEE Transactions on Communications 64 (12): 4983–4996.

53 53 Zeng, Y. and Zhang, R. (2017). Energy‐efficient UAV communication with trajectory optimization. IEEE Transactions on Wireless Communications 16 (6): 3747–3760.

54 54 Yang, Z., Pan, C., Wang, K., and Shikh‐Bahaei, M. (2019). Energy efficient resource allocation in UAV‐enabled mobile edge computing networks. IEEE Transactions on Wireless Communications 18 (9): 4576–4589.

55 55 Mumtaz, S., Huq, K.M.S., Radwan, A. et al. (2014). Energy efficient interference‐aware resource allocation in LTE‐D2D communication. 2014 IEEE International Conference on Communications (ICC), pp. 282–287.

56 56 Cui, F., Cai, Y., Qin, Z. et al. (2019). Multiple access for mobile‐UAV enabled networks: joint trajectory design and resource allocation. IEEE Transactions on Communications 67 (7): 4980–4994.

Autonomous Airborne Wireless Networks

Подняться наверх