Читать книгу Unmanned Aerial Vehicles for Internet of Things (IoT) - Группа авторов - Страница 60

References

Оглавление

1. Singhal, G., Bansod, B., Mathew, L., Unmanned Aerial Vehicle Classification, Applications and Challenges: A Review, 2018.

2. Shakhatreh, H. et al., Unmanned Aerial Vehicles (UAVs): A Survey on Civil Applications and Key Research Challenges. IEEE Access, 7, 48572–48634, 2019.

3. Khawaja, W., Ozdemir, O., Guvenc, I., UAV air-to-ground channel characterization for mmWave systems. Proc. IEEE VTC Fall Workshops, Sep. 2017.

4. NTT DOCOMO Inc. and Ericsson, New SID on Study on enhanced LTE Support for Aerial Vehicles, 3GPP Study Item Description (RP-170742), 3GPP, Dubrovnik, Croatia, Mar. 2017.

5. Li, B., Fei, Z., Zhang, Y., UAV Communications for 5G and Beyond: Recent Advances and Future Trends. IEEE Internet Things J., 1, 1, 99, December 2018.

6. Matolak, D.W. and Sun, R., Unmanned Aircraft Systems: Air-Ground Channel Characterization for Future Applications. IEEE Veh. Technol. Mag., 10, 2, 79–85, June 2015.

7. Sun, R. and Matolak, D.W., Initial Results for Airframe Shadowing in L- and C-Band Air-Ground Channels. Proc. Integrated Commun., Navigation, and Surveillance Conf, Apr. 2015, pp. 1–8.

8. 3GPP, Enhanced LTE support for aerial vehicles, May 2017.

9. Khawaja, G. et al., A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles. IEEE Commun. Surv. Tutorials, 21, 3, 2361–2391, December 2019.

10. Zajić, A., Mobile-to-mobile wireless channels, Artech House, Boston, London, 2012.

11. Zheng, Y., Wang, Y., Meng, F., Modeling and simulation of pathloss and fading for air-ground link of HAPs within a network simulator, in: Proc. of IEEE International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), Beijing, China, Oct. 2013.

12. Chu, X., Calvo-Ramirez, C., Briso, C., Yin, X., Low Altitude UAV Air-to-Ground Channel Measurement and Modeling in Semi urban Environments. Wirel. Commun. Mob. Comput., 2017, Article ID 1587412, 11 pages, November 2017.

13. Mozaffari, M., Saad, W., Bennis, M., Debbah, M., Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage. IEEE Commun. Lett., 20, 8, 1647–1650, Aug. 2016.

14. Yaliniz, R., El-Keyi, A., Yanikomeroglu, H., Efficient 3-D placement of an aerial base station in next generation cellular networks, in: Proc. of IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, May 2016.

15. Bor-Yaliniz, I. and Yanikomeroglu, H., The new frontier in ran heterogeneity: Multi-tier drone-cells. IEEE Commun. Mag., 54, 11, 48–55, 2016.

16. Hayajneh, A.M., Zaidi, S.A.R., McLernon, D.C., Ghogho, M., Drone empowered small cellular disaster recovery networks for resilient smart cities, in: Proc. of IEEE International Conference on Sensing, Communication and Networking (SECON Workshops), June 2016.

17. Gomez, K., Hourani, A., Goratti, L., Riggio, R., Kandeepan, S., Bucaille, I., Capacity evaluation of aerial LTE base-stations for public safety communications, in: Proc. IEEE European Conference on Networks and Communications (EuCNC), June 2015.

18. Challita, U. and Saad, W., Network formation in the Sky: Unmanned aerial vehicles for multi-hop wireless backhauling, in: Proc. of IEEE Global Telecommunications Conference (GLOBECOM), Singapore, Dec. 2017.

19. Chen, M., Mozaffari, M., Saad, W., Yin, C., Debbah, M., Hong, C.S., Caching in the sky: Proactive deployment of cache-enabled unmanned aerial vehicles for optimized quality-of-experience. IEEE J. Sel. Areas Commun., 35, 5, 1046–1061, May 2017.

20. Kalantari, E., Yanikomeroglu, H., Yongacoglu, A., On the number and 3D placement of drone base stations in wireless cellular networks, in: Proc. of IEEE Vehicular Technology Conference, 2016.

21. Shakhatreh, H., Khreishah, A., Chakareski, H., Salameh, B., Khalil, I., On the continuous coverage problem for a swarm of UAVs, in: Proc. of IEEE 37th Sarnoff Symposium, Sep. 2016, pp. 130–135.

22. Azari, M.M., Rosas, F., Chen, K.C., Pollin, S., Joint sum-rate and power gain analysis of an aerial base station, in: Proc. of IEEE GLOBECOM Workshops, Dec. 2016.

23. Hayajneh, A.M., Zaidi, S.A.R., McLernon, D.C., Ghogho, M., Optimal dimensioning and performance analysis of drone-based wireless communications, in: Proc. of IEEE GLOBECOM Workshops, Dec. 2016.

24. Jia, S. and Lin, Z., Modeling unmanned aerial vehicles base station in ground-to-air cooperative networks. IET Commun., 11, 8, 1187–1194, 2017.

25. Matolak, D.W. and Sun, R., Airground channel characterization for unmanned aircraft systems part-I: Methods, measurements, and models for over-water settings. IEEE Trans. Veh. Technol., 66, 1, 26–44, Jan. 2017.

26. Yang, Z., Zhou, L., Zhao, G., Zhou, S., Channel model in the urban environment for unmanned aerial vehicle communications, in Proc. 12th Eur. Conf. Antennas Propag. (EuCAP), London, U.K., p. 719, 2018.

27. Yan, C., Fu, L., Zhang, J., Wang, J., A comprehensive survey on UAV communication channel modeling. IEEE Access, 7, 107769–107792, 2019.

28. Zhou, L., Ma, H., Yang, Z., Zhou, S., Zhang, W., Unmanned Aerial Vehicle Communications: Path-Loss Modeling and Evaluation. IEEE Veh. Technol. Mag., 15, 2, 121–128, June 2020.

29. Azari, M.M., Rosas, F., Chen, K., Pollin, S., Optimal UAV Positioning for Terrestrial-Aerial Communication in Presence of Fading. 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, pp. 1–7, 2016.

30. Abdel-Malek, M.A., Ibrahim, A.S., Mokhtar, M., Optimum UAV positioning for better coverage-connectivity tradeoff. IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC, pp. 1–5, 2017.

31. Munaye, Y.Y., Lin, H.P., Adege, A.B., Tarekegn, G.B., UAV Positioning for Throughput Maximization Using Deep Learning Approaches. Sensors, 19, 2775, 2019.

32. Al-Hourani, A. et al., Coverage and rate analysis of aerial base stations. IEEE Trans. Aerosp. Electron. Syst., 52, 6, 3077–3081, Dec. 2016.

33. Mozaffari, M., Saad, W., Bennis, M., Debbah, M., Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage. IEEE Commun. Lett., 20, 8, 1647–1650, Aug. 2016.

34. Newhall, W.G. and Reed, J.H., A geometric air-to-ground radio channel model, in: Proc. IEEE Military Commun. Conf. (MILCOM), Anaheim, CA, USA, Oct. 2002, pp. 632–636.

35. Wentz, M. and Stojanovic, M., A MIMO radio channel model for low altitude air-to-ground communication systems, in: Proc. IEEE Veh. Technol. Conf. (VTC-Fall), Boston, MA, USA, Sep. 2015, pp. 1–6.

36. Ibrahim, M. and Arslan, H., Air–ground Doppler-delay spread spectrum for dense scattering environments, in: Proc. IEEE Military Commun. Conf. (MILCOM), Tampa, FL, USA, Oct. 2015, pp. 1661–1666.

37. Gulfam, S.M., Syed, J., Patwary, M.N., Abdel-Maguid, M., On the spatial characterization of 3-D air-to-ground radio communication channels, in: Proc. IEEE Int. Conf. Commun. (ICC), London, U.K., Jun. 2015, pp. 2924–2930.

38. Zeng, L., Cheng, X., Wang, C.-X., Yin, X., A 3D geometry-based stochastic channel model for UAV-MIMO channels, in: Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), San Francisco, CA, USA, Mar. 2017, pp. 1–5.

39. Chetlur, V.V. and Dhillon, H.S., Downlink coverage analysis for a finite 3-D wireless network of unmanned aerial vehicles. IEEE Trans. Commun., 65, 10, 4543–4558, Oct. 2017.

40. Zhou, L., Yang, Z., Zhao, G., Zhou, S., Wang, C.-X., Propagation Characteristics of Air-to-Air Channels in Urban Environments, in: 2018 IEEE Global Communications Conference (GLOBECOM) [8647360] (Global Communications Conference (GLOBECOM)), 2019.

41. Vinogradov, E., Sallouha, H., Bast, S.D., Azari, M.M., Pollin, S., Tutorial on UAV: A blue sky view on wireless communication. J. Mob. Multimedia, 14, 4, 395–468, January 2019.

42. Ahmed, N., Kanhere, S.S., Jha, S., On the importance of link characterization for aerial wireless sensor networks. IEEE Commun. Mag., 54, 5, 52–57, May 2016.

43. Goddemeier, N. and Wietfeld, C., Investigation of air-to-air channel characteristics and a UAV specific extension to the rice model, in: Proc. IEEE Glob. Commun. Conf. (GLOBECOM), San Diego, CA, USA, Dec. 2015, pp. 1–5.

44. Yanmaz, E., Kuschnig, R., Bettstetter, C., Channel measurements over 802.11a-based UAV-to-ground links, in: Proc. IEEE Glob. Commun. Conf. (GLOBECOM), Houston, TX, USA, Dec. 2011, pp. 1280–1284.

45. Yanmaz, E., Kuschnig, R., Bettstetter, C., Achieving air–ground communications in 802.11 networks with three-dimensional aerial mobility, in: Proc. IEEE INFOCOM, Turin, Italy, Apr. 2013, pp. 120–124.

46. Khawaja, A.A., Chen, Y., Zhao, N., Alouini, M.-S., Dobbins, P., A survey of channel modeling for UAV communications. IEEE Commun. Surv. Tutor., 20, 4, 2804–2821, 4th Quart., 2018.

47. Zeng, Y., Lyu, J., Zhang, R., Cellular-connected UAV: Potentials, challenges and promising technologies. IEEE Wirel. Commun., 26, 1, 120–127, 2019.

48. Sharma, V., Bennis, M., Kumar, R., UAV-assisted heterogeneous networks for capacity enhancement. IEEE Commun. Lett., 20, 6, 1207–1210, 2016.

49. Mozaffari, M., Saad, W., Bennis, M., Debbah, M., Optimal transport theory for power-efficient deployment of unmanned aerial vehicles, in: Proc. of IEEE International Conference on Communications (ICC), May 2016.

50. Galkin, B., Kibiłda, J., DaSilva, L.A., Backhaul for low-altitude UAVs in urban environments, in: Proc., International Conference on Communications (ICC), May 2018, pp. 1–6.

51. Hourani, A., Sithamparanathan, K., Lardner, S., Optimal LAP altitude for maximum coverage. IEEE Wirel. Commun. Lett., 3, 6, 569–572, Dec. 2014.

52. Zhang, X. and Duan, L., Fast deployment of UAV networks for optimal wireless coverage. IEEE Trans. Mob. Comput., 18, 3, 588–601, 2019.

53. Mozaffari, M., Saad, W., Bennis, M., Debbah, M., Mobile unmanned aerial vehicles (UAVs) for energy-efficient Internet of Things communications. IEEE Trans. Wireless Commun., 16, 11, 7574–7589, Nov. 2017.

54. Schouwenaars, T. et al., Mixed Integer Programming for Multi-Vehicle Path Planning. Proc. Euro. Control Conf, pp. 2603–08, 2001.

55. Wu, Q., Zeng, Y., Zhang, R., Joint trajectory and communication design for multi-uav enabled wireless networks. IEEE Trans. Wirel. Commun., 17, 3, 2109–2121, 2018.

56. Jiang, F. and Swindlehurst, A.L., Optimization of UAV heading for the ground-to-air uplink. IEEE J. Sel. Areas Commun., 30, 5, 993–1005, June 2012.

57. Zeng, Y., Zhang, R., Lim, T.J., Throughput maximization for UAV enabled mobile relaying systems. IEEE Trans. Commun., 64, 12, 4983–4996, Dec. 2016.

58. Franco, C.D. and Buttazzo, G., Energy-aware coverage path planning of UAVs, in: Proc. of IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), Vila Real, Portugal, April 2015, pp. 111–117.

59. Grøtli, E.I. and Johansen, T.A., Path planning for UAVs under communication constraints using splat! and milp. J. Intell. Robot. Syst., 65, 1–4, 265–282, 2012.

60. Tisdale, J., Kim, Z., Hedrick, J.K., Autonomous UAV path planning and estimation. IEEE Robot. Autom. Mag., 16, 2, 35–42, 2009.

61. Han, Z., Swindlehurst, A.L., Liu, K., Optimization of MANET connectivity via smart deployment/movement of unmanned air vehicles. IEEE Trans. Veh. Technol., 58, 7, 3533–3546, Dec. 2009.

62. Chen, J. and Gesbert, D., Optimal Positioning of Flying Relays for Wireless Networks: A LOS Map Approach. Proc. IEEE Int’l. Conf. Commun. (ICC), May, 2017.

63. Zeng, Y. and Zhang, R., Energy-efficient UAV communication with trajectory optimization. IEEE Trans. Wireless Commun., 16, 6, 3747–3760, June 2017.

64. Tran, T.X., Hajisami, A., Pompili, D., Cooperative hierarchical caching in 5G cloud radio access networks. IEEE Network, 31, 4, 35–41, July 2017.

65. Zorbas, D., Razafindralambo, T., Guerriero, F. et al., Energy efficient mobile target tracking using flying drones. Proc. Comput. Sci., 19, 80–87, June. 2013.

66. Lyu, J., Zeng, Y., Zhang, R., Cyclical multiple access in UAV aided communications: A throughput-delay tradeoff. IEEE Wirel. Commun. Lett., 5, 6, 600–603, 2016.

67. Song, Q., Jin, S., Zheng, F., Completion Time and Energy Consumption Minimization for UAV-Enabled Multicasting. IEEE Wireless Commun. Lett., 8, 3, 821–824, June 2019.

68. Ceran, E.T., Erkilic, T., Uysal-Biyikoglu, E., Girici, T., Leblebicioglu, K., Optimal energy allocation policies for a high altitude flying wireless access point. Trans. Emerging Telecommun. Technol., 28, 4, e3034, 2017.

69. Chen, M., Saad, W., Yin, C., Liquid state machine learning for resource allocation in a network of cache-enabled LTE-U UAVs, in: Proc. of Global Communications Conference (GLOBECOM), Singapore, Dec. 2017.

70. Mozaffari, M., Saad, W., Bennis, M., Debbah, M., Wireless communication using unmanned aerial vehicles (UAVs): Optimal transport theory for hover time optimization. IEEE Trans. Wireless Commun., 16, 12, 8052–8066, Dec. 2017.

71. Zeng, Y., Xu, J., Zhang, R., Energy minimization for wireless communication with rotary-wing UAV. IEEE Trans. Wirel. Commun., 18, 4, 2329–2345, 2019.

72. Mohindru, V., Bhatt, R., Singh, Y., Reauthentication scheme for mobile wireless sensor networks. Sustainable Comput.: Inf. Syst., 23, 158–166, 2019.

73. Mohindru, V. and Garg, A., Security Attacks in Internet of Things: A Review, in: The International Conference on Recent Innovations in Computing, March 2020, Springer, Singapore, pp. 679–693.

74. Mohindru, V., Singh, Y., Bhatt, R., Hybrid cryptography algorithm for securing wireless sensor networks from Node Clone Attack. Recent Adv. Electr. Electron. Eng. (Formerly Recent Patents Electrical & Electronic Engineering), 13, 2, 251–259, 020.

75. Mohindru, V., Singh, Y., Bhatt, R., A Review on Lightweight Node Authentication Algorithms in Wireless Sensor Networks, in: 2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC), 2018, December, IEEE, pp. 517–521.

1 *Corresponding author: jolly.parikh@gmail.com

Unmanned Aerial Vehicles for Internet of Things (IoT)

Подняться наверх