Читать книгу Energy - Группа авторов - Страница 84

References

Оглавление

1 Abas, N., Kalair, A., and Khan, N. (2015). Review of fossil fuels and future energy technologies. Futures 69: 31–49.

2 Acar, C., and Dincer, I. (2014). Comparative assessment of hydrogen production methods from renewable and non‐renewable sources. International Journal of Hydrogen Energy 39: 1–12.

3 Agarwal, T. (2012). Review of pump as turbine (pat) for microhydropower. International Journal of Emerging Technology and Advanced Engineering 2 (11): 163–169.

4 Ahmad, I., McCarthy, J. E., Bari, M. et al. (2014). Carbon nanomaterial based counter electrodes for dye sensitized solar cells. Solar Energy 102: 152–161. https://doi.org/10.1016/j.solener.2014.01.012

5 Aquatic energy renewable technology. (2008). Aqua RET. www.aquaret.com (accessed 30 July 2020)

6 Bagienski, W., and Gupta, M. (2011). Temperature dependence of polymer/fullerene organic solar cells. Solar Energy Materials & Solar Cells 95 (3): 933–941. https://doi.org/10.1016/j.solmat.2010.11.026

7 Balat, M. (2007). Status of fossil energy resources: a global perspective. Energy Sources, Part B: Economics, Planning, and Policy 2: 31–47.

8 Balat, M. (2008). Possible methods for hydrogen production, energy sources. Part a recover. Util. Environ. Eff. 31: 39–50.

9 Bertani, R. (2016). Geothermal power generation in the world 2010–2014 update report. Geothermics 60: 31–43.

10 Bhattacharya, M., Paramati, S.R., Ozturk, I. et al. (2016). The effect of renewable energy consumption on economic growth: evidence from top 38 countries. Applied Energy 162: 733–741.

11 Capasso, A., Salamandra, L., Chou, A., et al. (2014). Multi‐wall carbon nanotube coating of fluorine‐doped tin oxide as an electrode surface modifier for polymer solar cells. Solar Energy Materials & Solar Cells 122: 297–302.

12 Cornett, A.M. (2008). A global wave energy resource assessment. Proc. ISOPE 8(March):9.

13 Crus, J. ed. (2008). Ocean Wave Energy: Current Status and Future Perspectives. Berlin: Springer

14 Deb, S. K. (1998). Recent developments in high efficiency photovoltaic cells. Renewable Energy 15: 467–472.

15 Devabhaktuni, V., Alam, M., Depuru, S. S. S. R. et al. (2013). Solar energy: trends and enabling technologies. Renewable and Sustainable Energy Reviews 19: 555–564. https://doi.org/10.1016/j.rser.2012.11.024

16 Devi, B. P., Wu, K‐C., and Pei, Z. (2011). Gold nanomesh induced surface plasmon for photocurrent enhancement in a polymer solar cell. Solar Energy Materials & Solar Cells 95 (8): 2102–2106. https://doi.org/10.1016/j.solmat.2011.02.031

17 DiPippo, R. (2015). Geothermal Power Plants: Principles, Applications, Case Studies and Environmental Impact. Amsterdam: Elsevier. https://doi.org/10.1016/C2014‐0‐02885‐7

18 DOE. (2018). Algal biofuels, Office of Energy Efficiency & Renewable Energy, Department of Energy. www.energy.gov (accessed 30 July 2020)

19  Dou, L., You, J., Yang, J. et al. (2012). Tandem polymer solar cells featuring a spectrally matched low‐band gap polymer. Nature Photonics 6:180–185. https://doi.org/10.1038/nphoton.2011.356

20 Dreamwind. (2020). Increased sustainability of wind energy through the development of new materials. www.dreamwind.dk (accessed 29 July 2020).

21 Economist. (2012). Price of crystalline silicon photovoltaic cells (2012). www.economist.com (accessed 30 July 2020)

22 El Chaar, L., Lamont, L.A., and El Zein, N. (2011). Review of photovoltaic technologies. Renewable and Sustainable Energy Reviews 15 (5): 2165–2175. https://doi.org/10.1016/j.rser.2011.01.004

23 Ellabban, O., Abu‐Rub, H., and Blaabjerg, F. (2014). Renewable energy resources: current status, future prospects and their enabling technology. Renewable and Sustainable Energy Reviews 39: 748–764.

24 El‐Shatter, T. F., Eskander, M. N., and El‐Hagry, M. T. (2006). Energy flow and management of a hybrid wind/PV/fuel cell generation system. Energy Conversion and Management 47 (9): 1264–1280. https://doi.org/10.1016/j.enconman.2005.06.022

25 Fjeldstad, H.P., Pulg, U., and Forseth, T. (2018). Safe two‐way migration for salmonids and eel past hydropower structures in Europe: a review and recommendations for best‐practice solutions. Marine and Freshwater Research 69: 1834–1847. https://www.publish.csiro.au/mf/MF18120

26 Frankfurt School‐UNEP Centre/BNEF. (2020). Global Trends in Renewable Energy Investment 2020. www.irena.org

27 Friðleifsson, G.O., Pálsson, B., Albertsson, A.L. et al. (2015). IDDP‐1 drilled into Magma ‐world's first Magma‐EGS system created. Proceedings World Geothermal Congress Melbourne, Australia. http://iddp.is/wp‐content (accessed 30 July 2020)

28 Froese, M. (2017). What are the new ideas in condition monitoring for wind turbines. Wind Power Engineering and Development. www.windpowerengineering.com (accessed 30 July 2020).

29 Geirdal, C. A. C., Gudjonsdottir, M. S., and Jensson, P. (2015). Economic comparison of a well‐head geothermal power plant and a traditional one. Geothermics 53:1–13

30 Gevorgian, V., Muljadi, E., Luo, Y. et al. (2017). Supercapacitor to provide ancillary services. IEEE Energy Conv Congress Expo (ECCE), pp: 1030–1036.

31 Gong, J., Li, C., and Wasielewski, M. R. (2019). Advances in solar energy conversion. Chemical Society Reviews 48: 1862–1864.

32 Güney, T. (2019). Renewable energy, non‐renewable energy and sustainable development. International Journal of Sustainable Development and World Ecology 26(5): 389–397.

33 Gupta, V. K., Kubicek, C. P., Saddler, J. et al. ed. (2014). Bioenergy Research: Advances and Applications. Amsterdam: Elsevier.

34 Harfoot, M. B. J., Tittensor, D. P., Knight, S., et al. (2018). Present and future biodiversity risks from fossil fuel exploitation. Conservation Letters 11: e12448.

35 He, J., and Janáky, C. (2020). Recent advances in solar‐driven carbon dioxide conversion: expectations versus reality. ACS Energy Letters 5(6): 1996–2014.

36 Helmizar, H. (2016). Turbine wheel‐a hydropower converter for head differences between 2.5 and 5 m. PhD Thesis University of Southampton.

37  Hogan, T. W., Cada, G. F., and Amaral, S. V. (2014). The status of environmentally enhanced hydropower turbines. Fisheries 39 (4): 164–172. https://doi.org/10.1080/03632415.2014.897195

38 Huang, B. J., Lin, T. H., Hung, W. C. et al. (2001). Performance evaluation of solar photovoltaic/thermal systems. Solar Energy 70 (5): 443–448. https://doi.org/10.1016/S0038‐092X(00)00153‐5

39 IEA. (2020). Webpage. www.iea.org (accessed 28 July 2020)

40 IEA‐ETSAP (International Energy Agency – Energy Technology Systems Analysis Programme) (2010). Technology Brief E07 Geothermal Heat and Power. https://iea‐etsap.org (accessed 30 July 2020)

41 IHA. (2018) Hydropower Status Report Technical Report London, UK: International Hydropower Association.

42 IPCC. (2011). Renewable energy sources and climate change mitigation. https://archive.ipcc.ch/pdf/special‐reports (accessed 30 July 2020)

43 IRENA. (2016). Innovation Outlook for Offshore Wind Technology, International Renewable Energy Agency, Abu Dhabi.

44 IRENA. (2017). Geothermal Power: Technology Brief, International Renewable Energy Agency, Abu Dhabi.

45 IRENA. (2019a). Future of Wind: Deployment, Investment, Technology, Grid Integration and Socio‐Economic Aspects (a Global Energy Transformation Paper), International Renewable Energy Agency, Abu Dhabi.

46 IRENA. (2019b). Advanced biofuels. What Holds them Back? International Renewable Energy Agency, Abu Dhabi.

47 IRENA. (2019c). Renewable Capacity Statistics 2019, International Renewable Energy Agency, Abu Dhabi.

48 IRENA. (2019d). Renewable Power Generation Costs in 2018, International Renewable Energy Agency, Abu Dhabi.

49 IRENA. (2019e). Innovation Landscape Brief: Artificial Intelligence and Big Data, International Renewable Energy Agency, Abu Dhabi.

50 IRENA. (2019f). Renewable Energy Statistics 2019, The International Renewable Energy Agency, Abu Dhabi.

51 IRENA. (2019g). Global Energy Transformation: A Roadmap to 2050 (2019 Edition), International Renewable Energy Agency, Abu Dhabi.

52 IRENA. (2020a). Data & Statistics. Webpage. www.irena.org (accessed 28 July 2020)

53 IRENA. (2020b), Renewable Capacity Statistics 2020 International Renewable Energy Agency (IRENA), Abu Dhabi.

54 IRENA. (2020c). Data & Statistics. https://www.irena.org/Statistics (accessed 30 July 2020).

55 Johnston, I. W., Narsillo, G. A., and Colls, S. (2011). Emerging geothermal energy technologies. KSCEJ Civil Engineering 15 (4): 643–653. http://dx.doi.org/10.1007

56 Kannan, N., and Vakeesan, D. (2016). Solar energy for future world: a review. Renewable and Sustainable Energy Reviews 62: 1092–1105.

57 Karlsson, G., and Oparaocha, S. (2009). The road to Johannesburg and beyond: networking for gender and energy. Energy for Sustainable Development 7 (3): 62–67. https://doi.org/10.1016/S0973‐0826(08)60366‐X

58 Kerr, S., Colton, J., Kate, J. et al. (2015). Wright Glen. Rights and ownership in sea country: implications of marine renewable energy for indigenous and local communities. Marine Policy 52: 108–115.

59  Kotay, S. M., and Das, D. (2008). Biohydrogen as a renewable energy resource‐prospects and potentials. International Journal of Hydrogen Energy 33: 258–263.

60 Kougias, I., Patsialis, T., Zafirakou, A. et al. (2014). Exploring the potential of energy recovery using micro hydropower systems in water supply systems. Water Utility Journal 7: 25–33.

61 Kougias, I., Karakatsanis, D., Malatras, A. et al. (2016a). Renewable energy production management with a new harmony search optimization toolkit. Clean Technologies and Environmental Policy 18(8): 2603–2612. https://doi.org/10.1007/s10098‐016‐1173‐4

62 Kougias, I., Szabó, S., Monforti‐Ferrario, F. et al. (2016b). A methodology for optimization of the complementarity between small‐hydropower plants and solar PV systems. Renewable Energy 87: 1023–1030. https://doi.org/10.1016/j.renene.2015.09.073

63 Kougias, I., Aggidis, G., Avellan, F. et al. (2019). Analysis of emerging technologies in the hydropower sector. Renewable and Sustainable Energy Reviews 113:109257.

64 Kropp, R. (2009) Solar Expected to Maintain its Status as the world's Fastest‐Growing Energy Technology. U.S.A: Sustainability Investment News.

65 Kuo, C‐T., Shin, H‐Y., Hong H‐F. et al. (2009). Development of the high concentration III–V photovoltaic system at INER, Taiwan. Renewable Energy 34 (8): 1931–1933. https://doi.org/10.1016/j.renene.2008.12.014

66 Lagoun, M.S., Benalia, A., and Benbouzid, M.E.H. (2014). A predictive power control of doubly fed induction generator for wave energy Converter in irregular waves. Proceedings of the IEEE ICGE, p. 26–31 Sfax, Tunisia. hal.archives‐ouvertes.fr/hal‐01023509/document.

67 Leonard, M. D., and Michaelides, E. E. (2018). Grid‐independent residential buildings with renewable energy sources. Energy 148 (1): 448–460.

68 Long, M.P.E. and Lewis, B. et al. (2003). Geothermal power production: steam for free. POWER Engineers, Idaho, US. Available at: www.powereng.com (accessed 30 July 2020)

69 Looser, R., Vivar, M., and Everett, V. (2014). Spectral characterisation and long‐term performance analysis of various commercial heat transfer fluids (HTF) as direct‐absorption filters for CPV‐T beam‐splitting applications. Applied Energy 113:1496–1511.

70 Lorente, I. L., lvarez, A., and Blanco, D. J. L. (2011). Performance model for parabolic trough solar thermal power with thermal storage: comparison to operating plant data. Solar Energy 85: 2443–2460.

71 Lu, S‐M. (2018). A global review of enhanced geothermal system (EGS). Renewable and Sustainable Energy Reviews 81:2902–2921.

72 Lund, J. W., and Boyd, T. L. (2016). Direct utilization of geothermal energy 2015 worldwide review. Geothermics 60: 66–93.

73 Lund, P. D., Byrne, J., Berndes, G. et al. ed. (2016). Advances in Bioenergy the Sustainability Challenge. Chichester, UK: Wiley.

74 Ma, C., Liu, J., Ye, M., et al. (2018). Towards utmost bioenergy conversion efficiency of food waste: pretreatment, co‐digestion, and reactor type. Renewable and Sustainable Energy Reviews 90: 700–709.

75 Mamlook, R., Nijmeh, S., and Abdallah, S. M. (2006). A programmable logic controller to control two axis sun tracking system. Information Technology Journal 5 (6): 1083–1087. https://doi.org/10.3923/itj.2006.1083.1087

76 Mangal, D., Lamba, D., Gupta, T. et al. (2010). Acknowledgement of evacuated tube solar water heater over flat plate solar water heater. International Journal of Engineering 4 (4): 279–284.

77  Martins, F., Felgueiras, C., Smitkova, M., et al. (2019). Analysis of fossil fuel energy consumption and environmental impacts in European countries. Energies 12: 964.

78 Mørk G, Steve Barstow, Alina K. Kabuth & M. Teresa Pontes et al. (2010). Assessing the global wave energy potential. Proceedings of OMAE2010 (ASME), 29th international conference on ocean, offshore mechanics and arctic engineering. Shanghai, China.

79 Nihous, G. C. (2010). Mapping available ocean thermal energy conversion resources around the main Hawaiian islands with state‐of‐the‐art tools. Journal of Renewable and Sustainable Energy 2 (4): 043104. https://doi.org/10.1063/1.3463051

80 Novara, D., Derakhshan, S., McNabola, A. et al. (2017). Estimation of unit cost and maximum efficiency for pumps as turbines. 9th Eastern European Iwa Young Water Professionals, Budapest, Hungary (24–27 May 2017). http://iwa‐ywp.eu/wp‐content/uploads/2017/05/Final‐Conference‐Program.pdf.

81 Ogayar, B., and Vidal, P. G. (2009). Cost determination of the electro‐mechanical equipment of a small hydro‐power plant. Renewable Energy 34 (1): 6–13. https://doi.org/10.1016/j.renene.2008.04.039

82 Oh, Y., Hwang, K., Kim, C. et al. (2018). Recent developments and key barriers to advanced biofuels: a short review. Bioresource Technology 257: 320–333.

83 Olasolo, P., Juárez, M. C., Morales, M. P. et al. (2016). Enhanced geothermal systems (EGS): a review. Renewable and Sustainable Energy Reviews 56: 133–144.

84 Pandey, A. K., Tyagi, V.V., Selvaraj, J. A/L., et al. (2016). Recent advances in solar photovoltaic systems for emerging trends and advanced applications. Renewable and Sustainable Energy Reviews 53: 859–884.

85 Panwar, N., Kaushik, S., and Kothari, S. (2011). Role of renewable energy sources in environmental protection: a review. Renewable and Sustainable Energy Reviews 15(3):1513–1524.

86 Pareek, A., Dom, R., Gupta. J. et al. (2020). Insights into renewable hydrogen energy: recent advances and prospects. Materials Science for Energy Technologies 3:319–327.

87 Parida, B., Iniyan, S., and Goic, R. (2011). A review of solar photovoltaic technologies. Renewable and Sustainable Energy Reviews 15 (3): 1625–1636. https://doi.org/10.1016/j.rser.2010.11.032

88 Pathak, H., Jain, N., Bhatia, A. et al. (2009). Global warming mitigation potential of biogas plants in India. Environmental Monitoring and Assessment 157: 407–418. https://doi.org/10.1007/s10661‐008‐0545‐6

89 Pérez‐Collazo, C., Greaves, D., and Iglesias, G. (2015). A review of combined wave and offshore wind energy. Renewable and Sustainable Energy Reviews 42: 141–153.

90 Potumarthi, R., Baadhe, R. R., Nayak, P. et al. (2013). Simultaneous pretreatment and sacchariffication of rice husk by Phanerochete chrysosporium for improved production of reducing sugars. Bioresource Technology 128: 113–117. https://doi.org/10.1016/j.biortech.2012.10.030

91 Quaranta, E., and Revelli, R. (2018). Gravity water wheels as a micro hydropower energy source: a review based on historic data, design methods, efficiencies and modern optimizations. Renewable and Sustainable Energy Reviews 97: 414–427. https://doi.org/10.1016/j.rser.2018.08.033

92 Quaranta, E., Katopodis, C., Revelli, R. et al. (2017). Turbulent flow field comparison and related suitability for fish passage of a standard and a simplified low‐gradient vertical slot fishway. River Research and Applications 33 (8): 1295–1305. https://doi.org/10.1002/rra.3193

93 Razykov, T., Ferekides, C., Morel, D. et al. (2011). Solar photovoltaic electricity: current status and future prospects. Solar Energy 85:1580–1608.

94 RECYCLING. (2019). Joint project to advance wind turbine recycling. RECYCLING magazine. www.recycling‐magazine.com (accessed 29 July 2020).

95 REN21, P.S. (2014). Renewables 2014: Global Status Report. 2014: Secretariat Renewable Energy Policy Network for the 21st Century (REN21), Paris.

96 Roth, P., Georgiev, A., and Boudinov, H. (2005). Cheap two axis sun following device. Energy Conversion and Management 46 (7): 1179–1192. https://doi.org/10.1016/j.enconman.2004.06.015

97 S&P Global Platts. (2016). UDI world electric power plants data base. www.platts.com (accessed 30 July 2020)

98 Sahli, F., Werner, J., Kamino, B.A., et al. (2018). Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nature Materials 17: 820–826. https://doi.org/10.1038/s41563‐018‐0115‐4

99 Sandnes, B., and Rekstad, J. (2002). A photovoltaic/thermal (PV/T) collector with a polymer absorber plate. Experimental study and analytical model. Solar Energy 72 (1): 63–73. https://doi.org/10.1016/S0038‐092X(01)00091‐3

100 Sarasúa, I., Torres, B., Pérez‐Díaz, J.I. et al. (2016). Control strategy and sizing of a flywheel energy storage plant for the frequency control of an isolated power system. 15th wind integration workshop.

101 Sharma, K., Sharma, V., and Sharma, S. S. (2018). Dye‐sensitized solar cells: fundamentals and current status. Nanoscale Research Letters 13:381.

102 Shere, J. (2013). Renewable: The World‐Changing Power of Alternative Energy. St Martin's Press: New York, pp. 201.

103 Soliman, M. M., Shabana, M. M., and Abulfotuh, F. (1996). CdS/CdTe solar cell using sputtering technique. Renewable Energy 8 (1–4): 386–389. https://doi.org/10.1016/0960‐1481(96)88883‐5

104 Sorrell, S. (2015). Reducing energy demand: a review of issues, challenges and approaches. Renewable and Sustainable Energy Reviews 47: 74–82.

105 Stuermer, M. and Schwerhoff, G. (2015). Non‐renewable resources, extraction technology, and endogenous growth. FRB of Dallas Working Paper No. 1506. http://dx.doi.org/10.24149/wp1506r1

106 Tripanagnostopoulos, Y., Nousia, Th., Souliotis, M. et al. (2002). Hybrid photovoltaic/thermal solar systems. Solar Energy 72 (3): 217–234. https://doi.org/10.1016/S0038‐092X(01)00096‐2

107 Trivedi, C., Cervantes, M. J., Dahlhaug, O. G. et al. (2015). Experimental investigation of a high head Francis turbine during spin‐no‐load operation. Journal of Fluids Engineering 137: 061106. https://doi.org/10.1115/1.4029729

108 Valero, C., Egusquiza, M., Egusquiza, E., et al. (2017). Extension of operating range in pump‐turbines influence of head and load. Energies 10 (12): 2178. https://doi.org/10.3390/en10122178

109 Verma, V. K., Bram, S., Delattin, F. et al. (2012). Agro‐pellets for domestic heating boilers: standard laboratory and real life performance. Applied Energy 90 (1): 17–23. https://doi.org/10.1016/j.apenergy.2010.12.079

110  Wang, Z., Li, C., and Domen, K. (2019). Recent developments in heterogeneous photocatalysts for solar‐driven overall water splitting. Chemical Society Reviews 48: 2109–2125.

111 Wilberforce, T., Hassan, Z. E., and Durrant, A. et al. (2019). Overview of ocean power technology. Energy 175:165–181.

112 Wind Power Monthly. (2018). GE launches 5.3MW onshore turbine. www.windpowermonthly.com (accessed 29 July 2020).

113 WindEurope. (2017). Discussion Paper on Managing Composite Blade Waste, WindEurope, Brussels.

114 Windtrust. (2016), Designing the Wind Turbine of the Future, Windtrust.

115 Wood Mackenzie. (2019). Unplanned wind turbine repairs to cost industry $8 billion+ in 2019. www.woodmac.com (accessed 29 July 2020).

116 Xu, Z., Li, Z., Jiang, Y., et al. (2020). Recent advances in solar‐driven evaporation systems. Journal of Materials Chemistry A https://doi.org/10.1039/D0TA08869B

117 Yaramasu, V., Wu, B., Sen, P. C., et al. (2015). High‐power wind energy conversion systems: state‐of‐the‐art and emerging technologies. Proceedings of the IEEE 103: 740–788. doi:https://doi.org/10.1109/JPROC.2014.2378692

118 York, R. Do alternative energy sources displace fossil fuels?. (2012). Nature Climate Change 2: 441–443. https://doi.org/10.1038/nclimate1451

119 Zondag, H. A., de Vries, D. W., van Helden, W. G. J. et al. (2003). The yield of different combined PV‐thermal collector designs. Solar Energy 74 (3): 253–269. https://doi.org/10.1016/S0038‐092X(03)00121‐X

120 Zou, C., Zhao, Q., Zhang, G., et al. (2016). Energy revolution: from a fossil energy era to a new energy era. Natural Gas Industry B 3: 1–11.

Energy

Подняться наверх