Читать книгу Handbook of Aggregation-Induced Emission, Volume 1 - Группа авторов - Страница 28

References

Оглавление

1 1 (a) Kassem S, Leeuwen T, Lubbe AS, et al. Artificial molecular motors. Chem Soc Rev 2017; 46: 2592–2621; (b) Leeuwen T, Lubbe AS, Štacko P, et al. Dynamic control of function by light‐driven molecular motors. Nat Rev Chem 2017; 1: 0096; (c) Erbas‐Cakmak S, Leigh DA, McTernan CT, et al. Artificial molecular machines. Chem Rev 2015; 115: 10081−10206.

2 2 Turro NJ, Scaiano JC and Ramamurthy V. Modern molecular photochemistry of organic molecules. University Science Books, 2010.

3 3 (a) Shuai Z and Peng Q. Organic light‐emitting diodes: theoretical understanding of highly efficient materials and development of computational methodology. Natl Sci Rev 2017; 4: 224−239; (b) Shuai Z and Peng Q. Excited states structure and processes: understanding organic light‐emitting diodes at the molecular level. Phys Rep 2014; 537: 123−156.

4 4 Forster T and Kasper K. Ein Konzentrationsumschlag der Fluoreszenz. Zeitschrift für Physikalische Chemie 1954; 1: 275−277.

5 5 Luo J, Xie Z, Lam JWY, et al. Aggregation‐induced emission of 1‐methyl‐1,2,3,4,5‐pentaphenylsilole. Chem Commun 2001; 18: 1740−1741.

6 6 (a) Mei J, Leung NLC, Kwok RTK, et al. Aggregation‐induced emission: together we shine, united we soar! Chem Rev 2015; 115: 11718−11940; (b) Mei J, Hong Y, Lam JWY, et al. Aggregation‐induced emission: the whole is more brilliant than the parts. Adv Mater 2014; 26: 5429−5479; (c) He Z, Ke C and Tang BZ. Journey of aggregation‐induced emission research. ACS Omega 2018; 3: 3267−3277; (d) Chen Y, Lam JWY, Kwok RTK, et al. Aggregation‐induced emission: fundamental understanding and future developments. Mater Horiz 2019; 6: 428−433; (e) Zhao Z, Zhang H, Lam JWY, et al. Aggregation‐induced emission: new vistas at the aggregate level. Angewandte Chemie Int Edn 2020; 59: 2−22.

7 7 (a) Zhang T, Jiang Y, Niu Y, et al. Aggregation effects on the optical emission of 1,1,2,3,4,5‐Hexaphenylsilole (HPS): a QM/MM study. J Phys Chem A 2014; 118: 9094−9104; (b) Zhang T, Peng Q, Quan C, et al. Using the isotope effect to probe an aggregation induced emission mechanism: theoretical prediction and experimental validation. Chem Sci 2016; 7: 5573−5580; (c) Zhang T, Ma H, Niu Y, et al. Spectroscopic signature of the aggregation‐induced emission phenomena caused by restricted nonradiative decay: a theoretical proposal. J Phys Chem C 2015; 119: 5040−5047; (d) Wu Q, Deng C, Peng Q, et al. Quantum chemical insights into the aggregation induced emission phenomena: a QM/MM study for Pyrazine derivatives. J Comput Chem 2012; 33: 1862−1869; (e) Peng Q, Yi Y, Shuai Z, et al. Toward quantitative prediction of molecular fluorescence quantum efficiency: role of Duschinsky rotation. J Am Chem Soc 2007; 129: 9333−9339; (f) Niu Y, Li W, Peng Q, et al. Molecular materials property prediction package (MOMAP) 1.0: a software package for predicting the luminescent properties and mobility of organic functional materials. Mol Phys 2018; 116: 1078−1090; (g) Niu Y, Peng Q, Shuai Z, et al. Promoting‐mode free formalism for excited state radiationless decay process with Duschinsky rotation effect. Sci China Ser B Chem 2008; 51: 1153−1158.

8 8 (a) Gao Y, Chang X, Liu X, et al. Excited‐state decay paths in tetraphenylethene derivatives. J Phys Chem A 2017; 121: 2572–2579; (b) Prlj A, Došlić N, Corminboeuf C, et al. How does tetraphenylethylene relax from its excited states? Phys Chem Chem Phys 2016; 18: 11606–11609.

9 9 Tu Y, Liu J, Zhang H, et al. Restriction of access to the dark state: a new mechanistic model for heteroatom‐containing AIE systems. Angewandte Chemie Int Edn 2019; 58: 14911–14914.

10 10 (a) Bu F, Duan R, Xie Y, et al. Unusual aggregation‐induced emission of a coumarin derivative as a result of the restriction of an intramolecular twisting motion. Angewandte Chemie Int Edn 2015; 54: 14492–14497; (b) Zhao Z, Zhen X, Du L, et al. Non‐aromatic annulene‐based aggregation‐induced emission system via aromaticity reversal process. Nat Commun 2019; 10: 2952.

11 11 (a) Qian H, Cousins ME, Horak EH, et al. Suppression of Kasha's rule as a mechanism for fluorescent molecular rotors and aggregation‐induced emission. Nat Chem 2017; 9: 83–87; (b) Zhou P, Li P, Zhao Y, et al. Restriction of flip‐flop motion as a mechanism for aggregation‐induced emission. J Phys Chem Lett 2019; 10: 6929−6935; (c) Guo J, Fan J, Lin L, et al. Mechanical insights into aggregation‐induced delayed fluorescence materials with anti‐Kasha behavior. Adv Sci 2019; 6: 1801629; (d) He Z, Zhao W, Lam JWY, et al. White light emission from a single organic molecule with dual phosphorescence at room temperature. Nat Commun 2017; 8: 416.

12 12 Herzberg G and Teller E. Schwingungsstruktur der Elektronenübergänge bei mehratomigen Molekülen. Zeitschrift für Physikalische Chemie 1933; 21: 410.

13 13 (a) Zhang H, Zheng X, Xie N, et al. Why do simple molecules with “isolated” phenyl rings emit visible light? J Am Chem Soc 2017; 139: 16264–16272; (b) Zhang H, Du L, Wang L, et al. Visualization and manipulation of molecular motion in the solid state through photoinduced clusteroluminescence. J Phys Chem Lett 2019; 10: 7077−7085; (c) Sturala J, Etherington MK, Bismillah AN, et al. Excited‐state aromatic interactions in the aggregation‐induced emission of molecular rotors. J Am Chem Soc 2017; 139: 17882–17889.

14 14 (a) Chen J, Lam CCW, Lam JWY, et al. Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1,1‐substituted 2,3,4,5‐tetraphenylsiloles. Chem Mater 2003; 15: 1535–1546; (b) Fan X, Sun J, Wang F, et al. Photoluminescence and electroluminescence of hexaphenylsilole are enhanced by pressurization in the solid state. Chem Commun 2008; 26: 2989−2991; (c) Li Z, Dong Y, Mi B, et al. Structural control of the photoluminescence of silole regioisomers and their utility as sensitive regiodiscriminating chemosensors and efficient electroluminescent materials. J Phys Chem B 2005; 109: 10061–10066; (d) Zhao E, Lam JWY, Hong Y, et al. How do substituents affect silole emission? J Mater Chem C 2013; 1: 5661−5668; (e) Liang GD, Lam JWY, Qin W, et al. Molecular luminogens based on restriction of intramolecular motions through host–guest inclusion for cell imaging. Chem Commun 2014; 50: 1725−1727; (f) Qin A, Lam JWY, Mahtab F, et al. Pyrazine luminogens with “free” and “locked” phenyl rings: understanding of restriction of intramolecular rotation as a cause for aggregation‐induced emission. Appl Phys Lett 2009; 94: 253308.

15 15 Leung NLC, Xie N, Yuan W, et al. Restriction of intramolecular motions: the general mechanism behind aggregation‐induced emission. Chem A Eur J 2014; 20: 15349–15353.

16 16 Cai Y, Du L, Samedov K, et al. Deciphering the working mechanism of aggregation‐induced emission of tetraphenylethylene derivatives by ultrafast spectroscopy Chem Sci 2018; 9: 4662.

17 17 (a) Liu J, Pan L, Peng Q, et al. Tetraphenylpyrimidine‐based AIEgens: facile preparation, theoretical investigation and practical application. Molecules 2017; 22: 1679; (b) Zhang H, Liu J, Du L, et al. Drawing a clear mechanistic picture for the aggregation‐induced emission process. Mater Chem Front 2019; 3: 1143–1150; (c) Chen M, Hu X, Liu J, et al. Rational design of red AIEgens with a new core structure from non‐emissive heteroaromatics. Chem Sci 2018; 9: 7829–7834; (d) Chen M, Zhang X, Liu J, et al. Evoking photothermy by capturing intramolecular bond stretching vibration‐induced dark‐state energy. ACS Nano 2020; 14: 4265–4275.

18 18 (a) Crespo‐Otero R, Li Q and Blancafort L. Exploring potential energy surfaces for aggregation‐induced emission—from solution to crystal. Chem Asian J 2019; 14: 700–714; (b) Peng X, Ruiz‐Barragan S, Li Z, et al. Restricted access to a conical intersection to explain aggregation induced emission in dimethyl tetraphenylsilole. J Mater Chem C 2016; 4: 2802–2810; (c) Li Q and Blancafort L. A conical intersection model to explain aggregation induced emission in diphenyl dibenzofulvene. Chem Commun 2013; 49: 5966–5968; (d) Sasaki S, Suzuki S, Sameera WMC, et al. Highly twisted N,N‐dialkylamines as a design strategy to tune simple aromatic hydrocarbons as steric environment‐sensitive fluorophores. J Am Chem Soc 2016; 138: 8194–8206.

19 19 (a) Liese D and Haberhauer G. Rotations in excited ICT states—fluorescence and its microenvironmental sensitivity. Isr J Chem 2018; 58: 813–826; (b) Grabowski ZR, Rotkiewicz K and Rettig W. Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge‐transfer states and structures. Chem Rev 2003; 103: 3899–4031; (c) Lower S and El‐Sayed M. The triplet state and molecular electronic processes in organic molecules. Chem Rev 1966; 66: 199–241; (d) Zgierski MZ, Fujiwara T and Lim EC. Role of the πσ* state in molecular photophysics. Acc Chem Res 2010; 43: 506–517.

20 20 Kasha, M. Characterization of electronic transitions in complex molecules. Discuss Faraday Soc 1950; 9: 14–19.

21 21 (a) Zhang H, Zhao Z, McGonigal PR, et al. Clusterization‐triggered emission: uncommon luminescence from common materials. Mater Today 2020; 32: 275–292; (b) Zhou Q, Cao B, Zhu C, et al. Clustering‐triggered emission of nonconjugated polyacrylonitrile. Small 2016; 12: 6586–6592; (c) Bin X, Luo W, Yuan W, et al. Clustering‐triggered emission of poly (N‐hydroxysuccinimide methacrylate). Acta Chim Sin 2016; 74: 935–941; (d) Gong Y, Tan Y, Mei J, et al. Room temperature phosphorescence from natural products: crystallization matters. Sci China Chem 2013; 56: 1178–1182; (e) Yuan W and Zhang Y. Nonconventional macromolecular luminogens with aggregation‐induced emission characteristics. Polym Chem 2017; 55: 560–574.

22 22 Liu B, Zhang H, Liu S, et al. Polymerization‐induced emission. Mater Horiz 2020; 7: 987–998.

23 23 Liu S, Li Y, Zhang H, et al. Molecular motion in the solid state. ACS Mater Lett 2019; 1: 425–431.

24 24 Penfold TJ, Gindensperger E, Daniel C, et al. Spin‐vibronic mechanism for intersystem crossing. Chem Rev 2018; 118: 6975–7025.

Handbook of Aggregation-Induced Emission, Volume 1

Подняться наверх