Читать книгу Handbook of Aggregation-Induced Emission, Volume 3 - Группа авторов - Страница 26

References

Оглавление

1 1 Tang, C. W., VanSlyke, S. A. Organic electroluminescent diodes. Appl. Phys. Lett. 1987; 51(12):913–5.

2 2 Jeong, H., Shin, H., Lee, J., Kim, B., Park, Y. I., Yook, K. S., et al. Recent progress in the use of fluorescent and phosphorescent organic compounds for organic light‐emitting diode lighting. J. Photon. Energy. 2015; 5:23.

3 3 Wei, Q., Fei, N., Islam, A., Lei, T., Hong, L., Peng, R., et al. Small‐molecule emitters with high quantum efficiency: mechanisms, structures, and applications in OLED devices. Adv. Opt. Mater. 2018; 6(20):1800512.

4 4 Zou, S. J., Shen, Y., Xie, F. M., Chen, J. D., Li, Y. Q., Tang, J. X. Recent advances in organic light‐emitting diodes: toward smart lighting and displays. Mater. Chem. Front. 2020; 4(3):788–820.

5 5 Reineke, S., Thomschke, M., Lüssem, B., Leo, K. White organic light‐emitting diodes: status and perspective. Rev. Mod. Phys. 2013; 85(3):1245–93.

6 6 Ostroverkhova, O. Organic optoelectronic materials: mechanisms and applications. Chem. Rev. 2016; 116(22):13279–412.

7 7 Wei, Q., Pötzsch, R., Liu, X., Komber, H., Kiriy, A., Voit, B., et al. Hyperbranched polymers with high transparency and inherent high refractive index for application in organic light‐emitting diodes. Adv. Funct. Mater. 2016; 26(15):2545–53.

8 8 Fei, N., Wei, Q., Cao, L., Bai, Y., Ji, H., Peng, R., et al. A symmetric nonpolar blue AIEgen as nondoped fluorescent OLED emitter with low efficiency roll‐off. Org. Electron. 2020; 78:105574.

9 9 Li, Y. G., Wei, Q., Cao, L., Fries, F., Cucchi, M., Wu, Z. B., et al. Organic light‐emitting diodes based on conjugation‐induced thermally activated delayed fluorescence polymers: interplay between intra‐ and intermolecular charge transfer states. Front. Chem. 2019; 7:12.

10 10 Yang, R., Guan, Q., Liu, Z., Song, W., Hong, L., Lei, T., et al. A methodological study on tuning the thermally activated delayed fluorescent performance by molecular constitution in acridine–benzophenone derivatives. Chem. Asian J. 2018; 13(9):1187–91.

11 11 Im, Y., Byun, S. Y., Kim, J. H., Lee, D. R., Oh, C. S., Yook, K. S., et al. Recent progress in high‐efficiency blue‐light‐emitting materials for organic light‐emitting diodes. Adv. Funct. Mater. 2017; 27(13):1603007–n/a.

12 12 Song, J., Lee, H., Jeong, E. G., Choi, K. C., Yoo, S. Organic light‐emitting diodes: pushing toward the limits and beyond. Adv. Mater. (Deerfield Beach, Fla). 2020:e1907539.

13 13 Wei, Q., Ge, Z., Voit, B. Thermally activated delayed fluorescent polymers: structures, properties, and applications in OLED devices. Macromol. Rapid Commun. 2019; 40(1):1800570.

14 14 Mei, J., Hong, Y., Lam, J. W. Y., Qin, A., Tang, Y., Tang, B. Z. Aggregation‐induced emission: the whole is more brilliant than the parts. Adv. Mater. 2014; 26(31):5429–79.

15 15 Sliney, D. H. Radiometric quantities and units used in photobiology and photochemistry: recommendations of the Commission Internationale de l’Eclairage (International Commission on Illumination). Photochem. Photobiol. 2007; 83(2):425–32.

16 16 Robertson, A. R. The CIE 1976 color‐difference formulae. Color Res. Appl. 1977; 2(1):7–11.

17 17 Karzazi, Y. Organic light emitting diodes: devices and applications. J. Mater. Environ. Sci. 2014; 5(1):1–12.

18 18 Forrest, S. R., Bradley, D. D. C., Thompson, M. E. Measuring the efficiency of organic light‐emitting devices. Adv. Mater. 2003; 15(13):1043–8.

19 19 Roose, J., Tang, B. Z., Wong, K. S. Circularly‐polarized luminescence (CPL) from chiral AIE molecules and macrostructures. Small. 2016; 12(47):6495–512.

20 20 Baldo, M. A., Adachi, C., Forrest, S. R. Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet–triplet annihilation. Physical Review B. 2000; 62(16):10967–77.

21 21 Endo, A., Ogasawara, M., Takahashi, A., Yokoyama, D., Kato, Y., Adachi, C. Thermally activated delayed fluorescence from Sn4+–porphyrin complexes and their application to organic light emitting diodes—a novel mechanism for electroluminescence. Adv. Mater. 2009; 21(47):4802–6.

22 22 Endo, A., Sato, K., Yoshimura, K., Kai, T., Kawada, A., Miyazaki, H., et al. Efficient up‐conversion of triplet excitons into a singlet state and its application for organic light emitting diodes. Appl. Phys. Lett. 2011; 98(8):083302.

23 23 Deaton, J. C., Switalski, S. C., Kondakov, D. Y., Young, R. H., Pawlik, T. D., Giesen, D. J., et al. E‐type delayed fluorescence of a phosphine‐supported Cu2(μ‐NAr2)2 diamond core: harvesting singlet and triplet excitons in OLEDs. J. Am. Chem. Soc. 2010; 132(27):9499–508.

24 24 Albrecht, K., Matsuoka, K., Fujita, K., Yamamoto, K. Carbazole dendrimers as solution‐processable thermally activated delayed‐fluorescence materials. Angew. Chem. Int. Ed. 2015; 54(19):5677–82.

25 25 Kaji, H., Suzuki, H., Fukushima, T., Shizu, K., Suzuki, K., Kubo, S., et al. Purely organic electroluminescent material realizing 100% conversion from electricity to light. Nat. Commun. 2015; 6:8476.

26 26 Xiao, L., Su, S.‐J., Agata, Y., Lan, H., Kido, J. Nearly 100% internal quantum efficiency in an organic blue‐light electrophosphorescent device using a weak electron transporting material with a wide energy gap. Adv. Mater. 2009; 21(12):1271–4.

27 27 Rizzo, F., Cucinotta, F. Recent developments in AIEgens for non‐doped and TADF OLEDs. Israel J. Chem. 2018; 58(8):874–88.

28 28 Li, W., Liu, D., Shen, F., Ma, D., Wang, Z., Feng, T., et al. A twisting donor–acceptor molecule with an intercrossed excited state for highly efficient, deep‐blue electroluminescence. Adv. Funct. Mater. 2012; 22(13):2797–803.

29 29 Zhang, S., Li, W., Yao, L., Pan, Y., Shen, F., Xiao, R., et al. Enhanced proportion of radiative excitons in non‐doped electro‐fluorescence generated from an imidazole derivative with an orthogonal donor–acceptor structure. Chem. Commun. 2013; 49(96):11302–4.

30 30 Li, W., Pan, Y., Xiao, R., Peng, Q., Zhang, S., Ma, D., et al. Employing ∼100% excitons in OLEDs by utilizing a fluorescent molecule with hybridized local and charge‐transfer excited state. Adv. Funct. Mater. 2014; 24(11):1609–14.

31 31 Yao, L., Zhang, S., Wang, R., Li, W., Shen, F., Yang, B., et al. Highly efficient near‐infrared organic light‐emitting diode based on a butterfly‐shaped donor–acceptor chromophore with strong solid‐state fluorescence and a large proportion of radiative excitons. Angew. Chem. Int. Ed. 2014; 53(8):2119–23.

32 32 Kido, J., Iizumi, Y. Fabrication of highly efficient organic electroluminescent devices. Appl. Phy. Lett. 1998; 73(19):2721–3.

33 33 Obolda, A., Peng, Q., He, C., Zhang, T., Ren, J., Ma, H., et al. Triplet–polaron‐interaction‐induced upconversion from triplet to singlet: a possible way to obtain highly efficient OLEDs. Adv. Mater. 2016; 28(23):4740–6.

34 34 Peng, Q., Obolda, A., Zhang, M., Li, F. Organic light‐emitting diodes using a neutral π radical as emitter: the emission from a doublet. Angew. Chem. Int. Ed. 2015; 54(24):7091–5.

35 35 Tang, X., Hu, Y., Jia, W., Pan, R., Deng, J., Deng, J., et al. Intersystem crossing and triplet fusion in singlet‐fission‐dominated rubrene‐based OLEDs under high bias current. ACS Appl. Mater. Interfaces. 2018;10:1948−56.

36 36 Yang, J., Chi, Z. G., Zhu, W. H., Tang, B. Z., Li, Z. Aggregation‐induced emission: a coming‐of‐age ceremony at the age of eighteen. Sci. China‐Chem. 2019; 62(9):1090–8.

37 37 Qiu, Z., Yang, Z., Chen, W.‐C., Xing, L., Hu, S., Ji, S., et al. Alkoxy chain regulated stimuli‐responsive AIE luminogens based on tetraphenylethylene substituted phenanthroimidazoles and non‐doped OLEDs with negligible efficiency roll‐off. J. Mater. Chem. C. 2020; 8(12):4139–47.

38 38 Zhan, Y., Yang, Z., Tan, J., Qiu, Z., Mao, Y., He, J., et al. Synthesis, aggregation‐induced emission (AIE) and electroluminescence of carbazole‐benzoyl substituted tetraphenylethylene derivatives. Dyes Pigm. 2020; 173:107898.

39 39 Kim, J. Y., Yasuda, T., Yang, Y. S., Adachi, C. Bifunctional star‐burst amorphous molecular materials for OLEDs: achieving highly efficient solid‐state luminescence and carrier transport induced by spontaneous molecular orientation. Adv. Mater. 2013; 25(19):2666–71.

40 40 Zhan, X., Wu, Z., Lin, Y., Xie, Y., Peng, Q., Li, Q., et al. Benzene‐cored AIEgens for deep‐blue OLEDs: high performance without hole‐transporting layers, and unexpected excellent host for orange emission as a side‐effect. Chem. Sci. 2016; 7(7):4355–63.

41 41 Liu, F., Liu, H., Tang, X., Ren, S., He, X., Li, J., et al. Novel blue fluorescent materials for high‐performance nondoped blue OLEDs and hybrid pure white OLEDs with ultrahigh color rendering index. Nano Energy. 2020; 68:104325.

42 42 Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., et al. Light‐emitting diodes based on conjugated polymers. Nature. 1990; 347:539.

43 43 Zhao, Z., Chen, S., Deng, C., Lam, J. W. Y., Chan, C. Y. K., Lu, P., et al. Construction of efficient solid emitters with conventional and AIE luminogens for blue organic light‐emitting diodes. J. Mater. Chem. 2011; 21(29):10949–56.

44 44 Huang, J., Yang, X., Wang, J., Zhong, C., Wang, L., Qin, J., et al. New tetraphenylethene‐based efficient blue luminophors: aggregation induced emission and partially controllable emitting color. J. Mater. Chem. 2012; 22(6):2478–84.

45 45 Gong, W.‐L., Wang, B., Aldred, M. P., Li, C., Zhang, G.‐F., Chen, T., et al. Tetraphenylethene‐decorated carbazoles: synthesis, aggregation‐induced emission, photo‐oxidation and electroluminescence. J. Mater. Chem. C. 2014; 2(34):7001–12.

46 46 Yang, J., Li, L., Yu, Y., Ren, Z., Peng, Q., Ye, S., et al. Blue pyrene‐based AIEgens: inhibited intermolecular π–π stacking through the introduction of substituents with controllable intramolecular conjugation, and high external quantum efficiencies up to 3.46% in non‐doped OLEDs. Mater. Chem. Front. 2017; 1(1):91–9.

47 47 Yang, J., Huang, J., Sun, N., Peng, Q., Li, Q., Ma, D., et al. Twist versus linkage mode: which one is better for the construction of blue luminogens with AIE properties? Chem. Eur. J. 2015; 21(18):6862–8.

48 48 Yang, X., Zhao, Z., Ran, H., Zhang, J., Chen, L., Han, R., et al. New pyrene‐based butterfly‐shaped blue AIEgens: synthesis, structure, aggregation‐induced emission and their nondoped blue OLEDs. Dyes Pigm. 2020; 173:107881.

49 49 Yang, J., Qin, J. W., Ren, Z. C., Peng, Q., Xie, G. H., Li, Z. Pyrene‐based blue AIEgen: enhanced hole mobility and good EL performance in solution‐processed OLEDs. Molecules. 2017; 22(12):2144.

50 50 Huang, J., Sun, N., Dong, Y., Tang, R., Lu, P., Cai, P., et al. Similar or totally different: the control of conjugation degree through minor structural modifications, and deep‐blue aggregation‐induced emission luminogens for non‐doped OLEDs. Adv. Funct. Mater. 2013; 23(18):2329–37.

51 51 Huang, J., Sun, N., Yang, J., Tang, R., Li, Q., Ma, D., et al. Benzene‐cored fluorophors with TPE peripheries: facile synthesis, crystallization‐induced blue‐shifted emission, and efficient blue luminogens for non‐doped OLEDs. J. Mater. Chem. 2012; 22(24):12001–7.

52 52 Zhang, J., Li, A., Zou, H., Peng, J., Guo, J., Wu, W., et al. A “simple” donor–acceptor AIEgen with multi‐stimuli responsive behavior. Mater. Horiz. 2020; 7(1):135–42.

53 53 Martin, C., Borreguero, C., Kennes, K., Van der Auweraer, M., Hofkens, J., de Miguel, G., et al. Bipolar luminescent azaindole derivative exhibiting aggregation‐induced emission for non‐doped organic light‐emitting diodes. J. Mater. Chem. C. 2019; 7(5):1222–7.

54 54 Wang, Y., Liao, Y., Cabry, C. P., Zhou, D., Xie, G., Qu, Z., et al. Highly efficient blueish‐green fluorescent OLEDs based on AIE liquid crystal molecules: from ingenious molecular design to multifunction materials. J. Mater. Chem. C. 2017; 5(16):3999–4008.

55 55 Yang, J., Sun, N., Huang, J., Li, Q., Peng, Q., Tang, X., et al. New AIEgens containing tetraphenylethene and silole moieties: tunable intramolecular conjugation, aggregation‐induced emission characteristics and good device performance. J. Mater. Chem. C. 2015; 3(11):2624–31.

56 56 Feng, W., Su, Q., Ma, Y., Džolić, Z., Huang, F., Wang, Z., et al. Tetraphenylbenzosilole: an AIE building block for deep‐blue emitters with high performance in nondoped spin‐coating OLEDs. J. Org. Chem. 2020; 85(1):158–67.

57 57 Chen, M., Nie, H., Song, B., Li, L., Sun, J. Z., Qin, A., et al. Triphenylamine‐functionalized tetraphenylpyrazine: facile preparation and multifaceted functionalities. J. Mater. Chem. C. 2016; 4(14):2901–8.

58 58 Chen, M., Li, L., Nie, H., Tong, J., Yan, L., Xu, B., et al. Tetraphenylpyrazine‐based AIEgens: facile preparation and tunable light emission. Chem. Sci. 2015; 6(3):1932–7.

59 59 Wu, H., Pan, Y., Zeng, J., Du, L., Luo, W., Zhang, H., et al. Novel strategy for constructing high efficiency OLED emitters with excited state quinone‐conformation induced planarization process. Adv. Opt. Mater. 2019; 7(18):1900283.

60 60 Pan, L., Wu, H., Liu, J., Xue, K., Luo, W., Chen, P., et al. Tetraphenylpyrazine based AIE luminogens: unique excited state decay and its application in deep‐blue light‐emitting diodes. Adv. Opt. Mater. 2019; 7(6):1801673.

61 61 Odabas, S., Tekin, E., Turksoy, F., Tanyeli, C. Inexpensive and valuable: a series of new luminogenic molecules with the tetraphenylethene core having excellent aggregation induced emission properties. J. Mater. Chem. C. 2013; 1(42):7081–91.

62 62 Odabas, S., Tekin, E., Turksoy, F., Tanyeli, C. Synthesis of new N‐heteroaromatic attached tetraphenylethene based luminogens having aggregation induced emission and their applications in organic light emitting diodes. J. Lumin. 2016; 176:240–9.

63 63 Qin, W., Liu, J., Chen, S., Lam, J. W. Y., Arseneault, M., Yang, Z., et al. Crafting NPB with tetraphenylethene: a win–win strategy to create stable and efficient solid‐state emitters with aggregation‐induced emission feature, high hole‐transporting property and efficient electroluminescence. J. Mater. Chem. C. 2014; 2(19):3756–61.

64 64 Peng, Z., Huang, K., Tao, Y., Li, X., Zhang, L., Lu, P., et al. Turning on the solid emission from non‐emissive 2‐aryl‐3‐cyanobenzofurans by tethering tetraphenylethene for green electroluminescence. Mater. Chem. Front. 2017; 1(9):1858–65.

65 65 Xiong, Y., Zeng, J. J., Chen, B., Lam, J. W. Y., Zhao, Z. J., Chen, S. M., et al. New carbazole‐substituted siloles for the fabrication of efficient non‐doped OLEDs. Chin. Chem. Lett. 2019; 30(3):592–6.

66 66 Gupta, V. K., Singh, R. A. Aggregation‐induced enhanced green light emission from a simple donor–π–acceptor (D–π–A) material: a structure–property relationship study. Faraday Discuss. 2017; 196(0):131–42.

67 67 Chen, L., Zhang, C., Lin, G., Nie, H., Luo, W., Zhuang, Z., et al. Solution‐processable, star‐shaped bipolar tetraphenylethene derivatives for the fabrication of efficient nondoped OLEDs. J. Mater. Chem. C. 2016; 4(14):2775–83.

68 68 Shi, H., Xin, D., Bai, S.‐D., Fang, L., Duan, X.‐E., Roose, J., et al. The synthesis, crystal structures, aggregation‐induced emission and electroluminescence properties of two novel green‐yellow emitters based on carbazole‐substituted diphenylethene and dimesitylboron. Org. Electron. 2016; 33:78–87.

69 69 Shi, H., Xin, D., Gu, X., Zhang, P., Peng, H., Chen, S., et al. The synthesis of novel AIE emitters with the triphenylethene‐carbazole skeleton and para‐/meta‐substituted arylboron groups and their application in efficient non‐doped OLEDs. J. Mater. Chem. C. 2016; 4(6):1228–37.

70 70 Zhao, Q., Sun, J. Z. Red and near infrared emission materials with AIE characteristics. J. Mater. Chem. C. 2016; 4(45):10588–609.

71 71 Zhang, L. P., Che, W. L., Yang, Z. Y., Liu, X. M., Liu, S., Xie, Z. G., et al. Bright red aggregation‐induced emission nanoparticles for multifunctional applications in cancer therapy. Chem. Sci. 2020; 11(9):2369–74.

72 72 Xu, W., Lee, M. M. S., Nie, J.‐J., Zhang, Z., Kwok, R. T. K., Lam, J. W. Y., et al. Three‐pronged attack by homologous far‐red/NIR AIEgens to achieve 1+1+1>3 synergistic enhanced photodynamic therapy. Angew. Chem. Int. Ed. 2020;59:9610–16.

73 73 Wan, Q., Tong, J., Zhang, B., Li, Y., Wang, Z., Tang B. Z. Exploration of high efficiency AIE‐active deep/near‐infrared red emitters in OLEDs with high‐radiance. Adv. Opt. Mater. 2020; 8(4):1901520.

74 74 Zhao, Z., Deng, C., Chen, S., Lam, J. W. Y., Qin, W., Lu, P., et al. Full emission color tuning in luminogens constructed from tetraphenylethene, benzo‐2,1,3‐thiadiazole and thiophene building blocks. Chem. Commun. 2011; 47(31):8847–9.

75 75 Zhao, Z., Geng, J., Chang, Z., Chen, S., Deng, C., Jiang, T., et al. A tetraphenylethene‐based red luminophor for an efficient non‐doped electroluminescence device and cellular imaging. J. Mater. Chem. 2012; 22(22):11018–21.

76 76 Li, H., Chi, Z., Zhang, X., Xu, B., Liu, S., Zhang, Y., et al. New thermally stable aggregation‐induced emission enhancement compounds for non‐doped red organic light‐emitting diodes. Chem. Commun. 2011; 47(40):11273–5.

77 77 Qin, W., Lam, J. W. Y., Yang, Z., Chen, S., Liang, G., Zhao, W., et al. Red emissive AIE luminogens with high hole‐transporting properties for efficient non‐doped OLEDs. Chem. Commun. 2015; 51(34):7321–4.

78 78 Du, X., Qi, J., Zhang, Z., Ma, D., Wang, Z. Y. Efficient non‐doped near infrared organic light‐emitting devices based on fluorophores with aggregation‐induced emission enhancement. Chem. Mater. 2012; 24(11):2178–85.

79 79 Chen, S., Kwok, H. S., Zhao, Z., Tang, B. Z. P‐165: efficient RGBW OLEDs based on 4,4′‐Bis (1,2,2‐triphenylvinyl)biphenyl. SID Symp. Dig. Tech. Pap. 2010; 41(1):1867–70.

80 80 Zhao, Z., Lam, J. W. Y., Tang, B. Z. Tetraphenylethene: a versatile AIE building block for the construction of efficient luminescent materials for organic light‐emitting diodes. J. Mater. Chem. 2012; 22(45):23726–40.

81 81 Chen, S., Zhao, Z., Tang, B. Z., Kwok, H. S. Non‐doped white organic light‐emitting diodes based on aggregation‐induced emission. J. Phys. D Appl. Phys. 2010; 43(9):095101.

82 82 Chen, S., Zhao, Z., Wang, Z., Lu, P., Gao, Z., Ma, Y., et al. Bi‐layer non‐doped small‐molecular white organic light‐emitting diodes with high colour stability. J. Phys. D Appl. Phys. 2011; 44(14):145101.

83 83 Liu, S., Li, F., Diao, Q., Ma, Y. Aggregation‐induced enhanced emission materials for efficient white organic light‐emitting devices. Org. Electron. 2010; 11(4):613–7.

84 84 Lee, Y.‐T., Chang, Y.‐T., Chen, C.‐T., Chen, C.‐T. The first aggregation‐induced emission fluorophore as a solution processed host material in hybrid white organic light‐emitting diodes. J. Mater. Chem. C. 2016; 4(29):7020–5.

85 85 Liu, B., Nie, H., Lin, G., Hu, S., Gao, D., Zou, J., et al. High‐performance doping‐free hybrid white OLEDs based on blue aggregation‐induced emission luminogens. ACS Appl. Mater. Interf. 2017; 9(39):34162–71.

86 86 Chen, B., Liu, B., Zeng, J., Nie, H., Xiong, Y., Zou, J., et al. Efficient bipolar blue AIEgens for high‐performance nondoped blue OLEDs and hybrid white OLEDs. Adv. Funct. Mater. 2018; 28(40):1803369.

87 87 Xu, Z., Gong, Y., Dai, Y., Sun, Q., Qiao, X., Yang, D., et al. High efficiency and low roll‐off hybrid WOLEDs by using a deep blue aggregation‐induced emission material simultaneously as blue emitter and phosphor host. Adv. Opt. Mater. 2019; 7(9):1801539.

88 88 Xu, Z., Gu, J., Qiao, X., Qin, A., Tang, B. Z., Ma, D. Highly efficient deep blue aggregation‐induced emission organic molecule: a promising multifunctional electroluminescence material for blue/green/orange/red/white OLEDs with superior efficiency and low roll‐off. ACS Photonics. 2019; 6(3):767–78.

89 89 Duggal, A. R., Shiang, J. J., Heller, C. M., Foust, D. F. Organic light‐emitting devices for illumination quality white light. Appl. Phys. Lett. 2002; 80(19):3470–2.

90 90 Krummacher, B. C., Choong, V.‐E., Mathai, M. K., Choulis, S. A., So, F., Jermann, F., et al. Highly efficient white organic light‐emitting diode. Appl. Phys. Lett. 2006; 88(11):113506.

91 91 Chen, S., Kwok, H.‐S. Top‐emitting white organic light‐emitting diodes with a color conversion cap layer. Org. Electron. 2011; 12(4):677–81.

92 92 Guo, J. J., Zhao, Z. J., Tang, B. Z. Purely organic materials with aggregation‐induced delayed fluorescence for efficient nondoped OLEDs. Adv. Optical Mater. 2018; 6(15):11.

93 93 Ma, Y., Zhang, H., Shen, J., Che, C. Electroluminescence from triplet metal–ligand charge‐transfer excited state of transition metal complexes. Synth. Met. 1998; 94(3):245–8.

94 94 Baldo, M. A., O'Brien, D. F., You, Y., Shoustikov, A., Sibley, S., Thompson, M. E., et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature. 1998; 395:151.

95 95 Huckaba, A. J., Nazeeruddin, M. K. Strategies for tuning emission energy in phosphorescent Ir(III) complexes. Comment. Inorg. Chem. 2017; 37(3):117–45.

96 96 Godin, R., Wang, Y., Zwijnenburg, M. A., Tang, J., Durrant, J. R. Time‐resolved spectroscopic investigation of charge trapping in carbon nitrides photocatalysts for hydrogen generation. J. Am. Chem. Soc. 2017; 139(14):5216–24.

97 97 Tang, M. C., Chan, A. K. W., Chan, M. Y., Yam, V. W. W. Platinum and gold complexes for OLEDs. Top. Curr. Chem. 2016; 374(4):43.

98 98 Strassner, T. Phosphorescent platinum(II) complexes with CC cyclometalated NHC ligands. Acc. Chem. Res. 2016; 49(12):2680–9.

99 99 Liu, Z., Qiu, J., Wei, F., Wang, J., Liu, X., Helander, M. G., et al. Simple and high efficiency phosphorescence organic light‐emitting diodes with codeposited copper(I) emitter. Chem. Mater. 2014; 26(7):2368–73.

100 100 Wu, F., Li, J., Tong, H., Li, Z., Adachi, C., Langlois, A., et al. Phosphorescent Cu(I) complexes based on bis(pyrazol‐1‐yl‐methyl)‐pyridine derivatives for organic light‐emitting diodes. J. Mater. Chem. C. 2015; 3(1):138–46.

101 101 Liao, J.‐L., Chi, Y., Yeh, C.‐C., Kao, H.‐C., Chang, C.‐H., Fox, M. A., et al. Near infrared‐emitting tris‐bidentate Os(II) phosphors: control of excited state characteristics and fabrication of OLEDs. J. Mater. Chem. C. 2015; 3(19):4910–20.

102 102 Ma, H. L., Lv, A. Q., Fu, L. S., Wang, S., An, Z. F., Shi, H. F., et al. Room‐temperature phosphorescence in metal‐free organic materials. Ann. Phys. Berlin. 2019; 531(7):14.

103 103 Gan, N., Shi H. F., An, Z. F., Huang, W. Recent advances in polymer‐based metal‐free room‐temperature phosphorescent materials. Adv. Funct. Mater. 2018; 28(51):24.

104 104 Zhang, G., Chen, B., Huang, W., Su, H., Miao, H., Zhang, X. Unexpected chromophore‐solvent reaction leads to bicomponent aggregation‐induced phosphorescence. Angew. Chem. Int. Ed. 2020;59:10023–6.

105 105 Zhang, T., Ma, X., Wu, H., Zhu, L., Zhao, Y., Tian, H. Molecular engineering for metal‐free amorphous materials with room‐temperature phosphorescence. Angew. Chem. Int. Ed. 2020;59:11206–16.

106 106 Manimaran, B., Thanasekaran, P., Rajendran, T., Lin, R.‐J., Chang, I. J., Lee, G.‐H., et al. Luminescence enhancement induced by aggregation of alkoxy‐bridged rhenium(I) molecular rectangles. Inorg. Chem. 2002; 41(21):5323–5.

107 107 Climent, C., Alam, P., Pasha, S. S., Kaur, G., Choudhury, A. R., Laskar, I. R., et al. Dual emission and multi‐stimuli‐response in iridium(III) complexes with aggregation‐induced enhanced emission: applications for quantitative CO2 detection. J. Mater. Chem. C. 2017; 5(31):7784–98.

108 108 Wen, L.‐L., Hou, X.‐G., Shan, G.‐G., Song, W.‐L., Zhang, S.‐R., Sun, H.‐Z., et al. Rational molecular design of aggregation‐induced emission cationic Ir(III) phosphors achieving supersensitive and selective detection of nitroaromatic explosives. J. Mater. Chem. C. 2017; 5(41):10847–54.

109 109 Li, P., Zeng, Q.‐Y., Sun, H.‐Z., Akhtar, M., Shan, G.‐G., Hou, X.‐G., et al. Aggregation‐induced emission (AIE) active iridium complexes toward highly efficient single‐layer non‐doped electroluminescent devices. J. Mater. Chem. C. 2016; 4(44):10464–70.

110 110 Zhu, Y.‐C., Zhou, L., Li, H.‐Y., Xu, Q.‐L., Teng, M.‐Y., Zheng, Y.‐X., et al. Highly efficient green and blue‐green phosphorescent OLEDs based on iridium complexes with the tetraphenylimidodiphosphinate ligand. Adv. Mater. 2011; 23(35):4041–6.

111 111 Liu, J., Shi, X., Wu, X., Wang, J., Min, Z., Wang, Y., et al. Achieving above 30% external quantum efficiency for inverted phosphorescence organic light‐emitting diodes based on ultrathin emitting layer. Org. Electron. 2014; 15(10):2492–8.

112 112 Sun, Y., Yang, X., Liu, B., Guo, H., Zhou, G., Ma, W., et al. Aggregation‐induced emission triggered by the radiative‐transition‐switch of a cyclometallated Pt(II) complex. J. Mater. Chem. C. 2019; 7(40):12552–9.

113 113 Baleizão, C., Berberan‐Santos, M. N. Thermally activated delayed fluorescence in fullerenes. Ann. N. Y. Acad. Sci. 2008; 1130(1):224–34.

114 114 Parker, C. A., Hatchard, C. G. Triplet–singlet emission in fluid solutions. Phosphorescence of eosin. Trans. Faraday Soc. 1961; 57:1894–904.

115 115 Yang, Z., Mao, Z., Xie, Z., Zhang, Y., Liu, S., Zhao, J., et al. Recent advances in organic thermally activated delayed fluorescence materials. Chem. Soc. Rev. 2017; 46(3):915–1016.

116 116 Uoyama, H., Goushi, K., Shizu, K., Nomura, H., Adachi, C. Highly efficient organic light‐emitting diodes from delayed fluorescence. Nature. 2012; 492(7428):234–8.

117 117 Chihaya, A. Third‐generation organic electroluminescence materials. Jpn. J. Appl. Phys. 2014; 53(6):060101.

118 118 Furue, R., Nishimoto, T., Park, I. S., Lee, J., Yasuda, T. Aggregation‐induced delayed fluorescence based on donor/acceptor‐tethered Janus Carborane Triads: unique photophysical properties of nondoped OLEDs. Angew. Chem. Int. Ed. 2016; 55(25):7171–5.

119 119 Guo, J. J., Li, X. L., Nie, H., Luo, W. W., Gan, S. F., Hu, S. M., et al. Achieving high‐performance nondoped OLEDs with extremely small efficiency roll‐off by combining aggregation‐induced emission and thermally activated delayed fluorescence. Adv. Funct. Mater. 2017; 27(13):9.

120 120 Guo, J., Li, X.‐L., Nie, H., Luo, W., Hu, R., Qin, A., et al. Robust luminescent materials with prominent aggregation‐induced emission and thermally activated delayed fluorescence for high‐performance organic light‐emitting diodes. Chem. Mater. 2017; 29(8):3623–31.

121 121 Guo, J., Li, X.‐L., Nie, H., Luo, W., Gan, S., Hu, S., et al. Achieving high‐performance nondoped OLEDs with extremely small efficiency roll‐off by combining aggregation‐induced emission and thermally activated delayed fluorescence. Adv. Funct. Mater. 2017; 27(13):1606458–n/a.

122 122 Li, M., Liu, Y., Duan, R., Wei, X., Yi, Y., Wang, Y., et al. Aromatic‐imide‐based thermally activated delayed fluorescence materials for highly efficient organic light‐emitting diodes. Angew. Chem. Int. Ed. 2017; 56(30):8818–22.

123 123 Keller, R. A. Excited triplet–singlet intersystem crossing. Chem. Phys. Lett. 1969; 3(1):27–9.

124 124 Islam, A., Zhang, D., Peng, R., Yang, R., Hong, L., Song, W., et al. Non‐doped sky‐blue OLEDs based on simple structured AIE emitters with high efficiencies at low driven voltages. Chem. Asian J. 2017; 12(17):2189–96.

125 125 Chen, L., Jiang, Y., Nie, H., Hu, R., Kwok, H. S., Huang, F., et al. Rational design of aggregation‐induced emission luminogen with weak electron donor–acceptor interaction to achieve highly efficient undoped bilayer OLEDs. ACS Appl. Mater. Interfaces. 2014; 6(19):17215–25.

126 126 Han, X., Bai, Q., Yao, L., Liu, H., Gao, Y., Li, J., et al. Highly efficient solid‐state near‐infrared emitting material based on triphenylamine and diphenylfumaronitrile with an EQE of 2.58% in nondoped organic light‐emitting diode. Adv. Funct. Mater. 2015; 25(48):7521–9.

127 127 Fan, J., Cai, L., Lin, L., Wang, C.‐K. Excited state dynamics for hybridized local and charge transfer state fluorescent emitters with aggregation‐induced emission in the solid phase: a QM/MM study. Phys. Chem. Chem. Phys. 2017; 19(44):29872–9.

128 128 Yuan, W. Z., Bin, X., Chen, G., He, Z., Liu, J., Ma, H., et al. Achieving hybridized local and charge‐transfer excited state and excellent OLED performance through facile doping. Adv. Opt. Mater. 2017; 5(21):1700466–n/a.

129 129 Li, C., Hanif, M., Li, X., Zhang, S., Xie, Z., Liu, L., et al. Effect of cyano‐substitution in distyrylbenzene derivatives on their fluorescence and electroluminescence properties. J. Mater. Chem. C. 2016; 4(31):7478–84.

130 130 Kondakov, D. Y., Pawlik, T. D., Hatwar, T. K., Spindler, J. P. Triplet annihilation exceeding spin statistical limit in highly efficient fluorescent organic light‐emitting diodes. J. Appl. Phys. 2009; 106(12):124510.

131 131 Zhou, J., Chen, P., Wang, X., Wang, Y., Wang, Y. Li, F., et al. Charge‐transfer‐featured materials‐promising hosts for fabrication of efficient OLEDs through triplet harvesting via triplet fusion. Chem. Commun. 2014; 50(57):7586–9.

132 132 Singh, S., Jones, W. J., Siebrand, W., Stoicheff, B. P., Schneider, W. G. Laser generation of excitons and fluorescence in anthracene crystals. J. Chem. Phys. 1965; 42(1):330–42.

Handbook of Aggregation-Induced Emission, Volume 3

Подняться наверх