Читать книгу Природа земли и жизни - Вадимир Голубев - Страница 12

Часть I. Динамика Земли
Глава 2. Природа георитма
Георитм и динамика Солнца

Оглавление

Главное влияние на Землю оказывает Солнце, определяющее динамику планетной системы, которая вращается вместе с ним справа налево (рис. 9-I). Система содержит четыре каменные планеты земной группы (внутренние): Меркурий, Венеру, Землю, Марс диаметром 4870, 12100, 12756 и 6670 км и четыре газовые планеты-гиганты (внешние) Юпитер, Сатурн, Уран, Нептун диаметром 143760, 120420, 51300 и 49500 км.


Рис. 9-I. Строение Солнечной системы (парад планет)


К планетам до 2006 года относился Плутон (диаметр 2320 км), но он меньше Луны и похож на глыбу льда. Плутон стал крупнейшей карликовой планетой занептунового пояса Койпера, образованного сотнями малых тел, состоящих изо льда метана, аммиака и воды. У планет кроме Меркурия и Венеры имеются спутники: у Юпитера (67), Сатурна (62), Урана (27) и Нептуна (14), в том числе мелкие. Гигантские спутники есть у Земли – Луна (3474 км), Юпитера – Ио (3643 км), Европа (3122 км), Ганимед (5262 км) и Каллисто (4821 км), Сатурна – Титан (5152 км) и Нептуна – Тритон (2707 км) (рис. 9-II).


Рис. 9-II. Крупнейшие спутники Юпитера: Ганимед, Каллисто, Ио и Европа (NASA)


Свыше 98 % массы Солнечной системы содержится в желтой звезде-карлике диаметром 1392 тыс. км. Солнце является плазменным шаром и мощным источником электромагнитного излучения в диапазоне от гамма-излучения до радиоволн с пиком мощности в видимом и инфракрасном диапазонах (81 и 18 % энергии). Солнечный ветер демонстрирует истечение из солнечной короны гелиево-водородной плазмы, в основном электронов, протонов и ядер гелия (альфа-частиц) со скоростью около миллиона тонн в секунду (рис. 10-I). Поток корпускулярного излучения значимо пульсирует по причине переменной активности Солнца, хотя оно и относится к слабопеременным звездам.


Рис. 10-I. Солнечный ветер и магнитосфера Земли


Солнце состоит из водорода, отчасти превращенного в гелий (около 70 и 29 %), и термоядерные реакции сделали его раскаленным шаром плотностью 1,41 г/см3, разогретым в центре свыше 10 млн K. Внутренняя энергия переносится излучением и конвекцией плазмы к поверхности, разогретой до 6 тыс. K. Атмосфера в виде желтой фотосферы и красной хромосферы толщиной 200–300 км и 7–8 тыс. км придает Солнцу оранжевый облик. Атмосферу увенчивает пульсирующая солнечная корона: внутренняя, восходящая на 300–500 тыс. км в виде светящихся ионизированных газов, и внешняя, отходящая на 80 млн км в виде отблеска светила на микрочастицах пыли (рис. 10-II).

Корона олицетворяет переменную активность Солнца, выражаемую высыпаниями центров активности. Центры представлены в фотосфере факелами и пятнами, в хромосфере – флоккулами и вспышками, а в короне – протуберанцами высотой до 12 тыс. км, корональными лучами и дырами. Активность обычно объясняется эндогенной магнитогидродинамикой, но за ней кроется генеральная динамика Солнца, а именно микроколебания скорости вращения. Его дифференциальное вращение и контролирует скопление центров активности на активных широтах. Ротационные напряжения заметны и в сотовой структуре фотосферы, состоящей из гранул конвекционного происхождения размером 150–1500 км (чаще 200–700) и при этом смутно расчерченной на ромбоиды.


А.


B.

Рис. 10-II. Солнце

А. Строение; Б. Активность


Всё говорит о сходной ротационной динамике Солнца и Земли. Сотовая структура фотосферы напоминает ячейки сети трещиноватости земной коры, к тому же тоже располосованной критическими широтами и долготами. Принципиальное сходство имеют и центры активности, которые представлены на Земле эпицентрами мощных землетрясений и вулканами, тоже выказывающими разгрузку ротационных напряжений.

Ротационные силы также опознаются в полярном сжатии и Земли, и Солнца, сплюснутого на 35 км (0,0005). Степень полярного сжатия Солнца колеблется вместе со скоростью вращения, что подтверждается короной, которая сплющивается к году минимума 11-летнего цикла активности и расправляется до почти сферической к году максимума. Одновременно колеблется диаметр Солнца, увеличившийся с минимума до максимума активности в 1986 и 1991 годах почти на 0,04 %, или на 250 км.

Солнечные пятна чаще появляются на активных долготах: 20°, 60°, 100°, 140°, 180°, 220°, 260°, 300° и 340°, составляющих почти антиподальные пары. Активнее долготы с интервалом 120°: 20°, 140° и 260°, причем в Южном полушарии эти долготы сдвинуты относительно Северного на 40° по ходу вращения Солнца. Так же сдвинуты активные долготы Земли, что может одинаково объясняться инерционным сдвигом полушарий вследствие эволюционного замедления вращения и эксцентричности ядер.

Небольшим отклонением ядра Солнца также объясняется осевая асимметрия его короны и наклон его экватора к плоскости эклиптики 7,25°. Диаметральные линии смещения асимметричного ядра Солнца проявляются его активными долготами, которые характеризуются сравнительно частым прохождением по ним векторов соединений и противостояний планет, отмечающих резонансные взаимодействия центров масс планет.

Солнечные пятна появляются в начале 11-летнего цикла солнечной активности на широтах ±30°, а к окончанию цикла смещаются к экватору на широты ±8°. Такие же широты известны на Земле как критические из-за смены типа ротационных напряжений при микроколебаниях скорости ее вращения. Также примечательно, что широтная зона ±8° соответствует наклону Солнца (7,25°) вкупе с наклонением Юпитера (1,30°), а с широтной зоной ±30° соотносится наклон Солнца вкупе с наклонением Плутона (17,16°).

Смещение пятен отражает совокупное обращение планет (точнее, их эксцентричных ядер) вокруг Солнца с цикличностью небесной механики и колебательным движением общего барицентра внутри Солнца. Даже обращение короткопериодических комет с периодами от 3 до 10 лет и наклонением орбит в среднем 45° аналогичным образом соотносится с редкими солнечными пятнами в высоких широтах (до ±52°).

Солнечные пятна отмечают вектора взаимодействий центров масс Солнца и планет и поэтому собираются на активных долготах и широтах. Взаимодействия усиливаются как за счет резонансного движения планет по эллиптическим орбитам (на разном удалении от Солнца и между собой), так и за счет резонансов в движении их спутников.

Фактически на все резонансные события в планетной системе Солнце реагирует вспышками и сериями вспышек разной силы, переходящими или не переходящими в пятна. В 2013 году астрономы из университета Дьюка в США по данным с 1976 года установили, что поток солнечного излучения на Землю возрастает при пересечении ею линии Солнце – Юпитер с периодом в 1,09 года. Это при том, что масса Юпитера в тысячу раз меньше массы Солнца, а расстояние между ними более 750 млн км.

Полициклические взаимодействия масс планет и Солнца с микроколебаниями скорости вращения несколько подвигают его ядро, стимулируя конвекцию. Конвекция же претворяется в неоднородности Солнца и нелинейной магнитогидродинамике. Эндогенная гелиодинамика в принципе обусловлена вращением эксцентрического ядра и связанных с ним активных гелиодолгот, что сказывается в секторной смене полярности гелиомагнитного поля, а оно как межпланетное поле регулирует динамику всей системы.

Неразрывность гравитационного (планетного) и магнитного (внутреннего) факторов активности Солнца подразумевает наличие у него динамического поля, базисного для гравитационного и магнитного полей. Гравитомагнитное энергоинформационное поле генерируется тонко пульсирующим ядром Солнца, которое стимулируется резонансными гравитомагнитными воздействиями планет. Колебания возникли при образовании Солнца, переняв галактический ритм, и модулируют по амплитуде, частоте и фазе ультракороткие пульсации субатомного происхождения, проявляемые излучением Солнца. Короткие колебания его ядра проявлены пульсациями яркости фотосферы в ритме 5 и 160 минут, причем в ритме 160 минут Солнце пульсирует с амплитудой 5 км.

Вместе с тем 11-летний цикл солнечной активности соразмерен с периодом в 11,08 года ускорения – замедления орбитального движения Солнца, что дает указание на межзвездные резонансные взаимодействия, тоже гравитомагнитные. Межзвездные взаимодействия и кроются за крупнейшими вспышками и выбросами солнечной плазмы. Именно схождение на прямой линии и резонансное взаимодействие центров масс многих звезд определило образование и эксцентрическое строение Солнца и планет.

Эксцентричность обусловила резонансное движение планет, означающее обращение центра масс Солнечной системы. Циклические подвижки барицентра и ядра Солнца преломляются в его кинематике и динамике, в том числе в магнитогидродинамической конвекции, непосредственно формирующей на поверхности центры активности. Облик возбужденного Солнца олицетворяет планетные и звездные динамические воздействия, которые представляют собой гравитомагнитные волны и энергоинформационные импульсы, связующие динамические поля космических тел и систем Вселенной.

Цикличность активности Солнца установлена по числам Вольфа – относительному количеству регистрируемых солнечных пятен. Пятна представляют собой темные вихревые образования в фотосфере поперечником 7–40 тыс. км с пониженной на 1500–2000 °C температурой и повышенной в десятки и сотни раз напряженностью магнитного поля (в 10 тыс. раз большей, чем у Земли). Период базового цикла солнечной активности – «цикла Швабе-Вольфа» – составляет в среднем 11,1 года (от 9,0 до 13,6 лет между минимумами активности и от 7,3 до 17,1 года между максимумами), причем рост и спад активности длится в среднем по 4 и 7 лет (рис. 11).

Циклы разделяются по минимумам активности, когда магнитная полярность головных и хвостовых пятен в каждом из полушарий изменяет свой знак. Нечетный цикл, как правило, длительнее предыдущего четного цикла. Оба цикла составляют в среднем 22-летний цикл («цикл Хейла»), означающий однонаправленную инверсию полярности поля около первого максимума активности. Переполюсовка имеет сходство с обращениями магнитного поля Земли, но они происходят с интервалом в тысячи и миллионы лет.

Пятна на Солнце известны еще по древнекитайским хроникам, но инструментально зафиксированы в 1611 году, а регистрируются с 1700 года. Первым 11-летним солнечной активности считается цикл, начавшийся в 1755 году. По колебаниям максимума 11-летнего цикла выделяются вековые (80–90-летние) циклы, притом, как видно, сдвоенные в 170–180-летние циклы. Они разделяются длительными минимумами солнечной активности: Маундера (1645–1715 годы), Шпёрера (1450–1540 годы) и Вольфа (1280–1340 годы). По содержанию углерода-14 в годичных кольцах реликтовых сосен с возрастом до 5 тыс. лет и по частоте полярных сияний в 1550–1750 годах намечаются изменения активности Солнца с периодом около 600, 1000 и 2000 лет.


Рис. 11. Цикличность активности Солнца


Уменьшение синодического периода вращения Солнца с 27 до 26 суток в эпоху минимума солнечной активности Маундера указывает на обратную зависимость активности Солнца от скорости вращения, которая вследствие его плазменного состояния дифференцирована по широте. Современная скорость вращения (оборота) снижается от 26 суток на экваторе до 34 суток на полюсах, причем 27,28-суточный оборот низкоширотной зоны ±16°, с повторным появлением солнечных пятен, выражен в излучении Солнца и принят как месячный цикл активности. На его фоне отмечаются колебания активности с периодичностью 3–5 и 15 синодических оборотов и около 2 лет.

За базовым 27,28-суточным циклом активности кроется оборот активных долгот эксцентрического Солнца. Многомесячные колебания активности тоже обусловлены его эксцентричностью, но в сочетании с дифференциальным вращением. А именно со схождением начальных экстрем-точек полярного и экваториального циклов (34 и 26 суток) с экстрем-точкой базового цикла. Те же самые участки полярных и экваториальной зон всё лучше сходятся по долготе через 3–5, 15 и 26 базовых циклов (81,8–136,4; 409,2 и 709,3 суток), отмечая тем самым резонансное завершение 4 и 3, 16 и 12, 26 и 21 оборотов этих широт. Базовый солнечный цикл проявляется в геомагнитной активности и учащении землетрясений через (13,65 ± 0,02) суток, полупериод цикла.

Многолетняя цикличность изменения скорости вращения Солнца и появления пятен определенно связана с резонансными воздействиями центров масс планет. О влиянии планет на активность Солнца в контексте ее 11-летнего цикла говорил еще в XIX веке Р. Вольф (рис. 12). Это подчеркивается парадами планет в 1941, 1962, 1982 и 2000 годах, то есть они повторялись примерно с интервалом 22-летнего солнечного цикла.

В нестабильности 22-летнего солнечного цикла сказывается нестабильность 11-летнего цикла, а она находит объяснение в неполной кратности периодов обращения ближних планет и колебании точки резонанса относительно средней величины цикла. Так, период обращения Юпитера составляет 11,86 года, Марса – 1,88 года (6 оборотов за 11,29 года), Венеры – 0,62 года (18 оборотов за 11,07 года) и Меркурия – 0,24 года (46–47 оборотов за 11 лет). Массивный Юпитер (1/1050 массы Солнца) с периодом 11,86 года определенно стабилизирует периодичность 11-летнего солнечного цикла.

Многолетние солнечные циклы складываются в вековые циклы, продолжительность которых тоже несколько колеблется из-за неполной кратности им периодов обращения дальних планет и колебания точки резонанса. Так, период обращения Урана составляет 84,01 года, Сатурна – 29,46 года (3 оборота за 88,37 года) и Юпитера – 11,86 года (7 оборотов за 83,04 года). Вековые циклы переходят в многовековые циклы через период обращения Нептуна 164,79 года (1/2 оборота за 82,4 года) и даже Плутона – 248,4 года (1/3 оборота за 82,8 года). Период вращения барицентра Солнечной системы (с учетом влияния Меркурия, Венеры, Земли, Марса и Юпитера) составляет около 180 лет, что говорит о реальности двойного векового цикла солнечной активности.


Рис. 12. Цикличность схождения (0) Юпитера, Земли, Венеры и Меркурия (наверху) и 11-летняя активность Солнца (по А. Л. Чижевскому, 1936)


Периоды обращения крупнейших планет – Юпитера, Урана, Нептуна – сказываются в многолетних и вековых циклах активности Солнца. Другие планеты вносят вклад в его активность в виде малых гармоник. Более общие и точные резонансы в движении всех планет сказываются в тысячелетних и гораздо больших циклах активности Солнца. Геологически длительные циклы его активности до сотен миллионов и миллиардов лет означают движение Солнечной системы вокруг ядра Галактики и звездные резонансы.

Вестником близкого окончания двойного векового цикла активности Солнца стал май 1982 года, когда все планеты, кроме Венеры, сошлись в секторе шириной 60–65°. Большой парад планет кульминировал в 1989–1991 годах, когда Сатурн, Уран, Нептун и Плутон вошли в соединение, а Юпитер вошел в противостояние, причем даже Плутон подошел к Солнцу на минимальное расстояние. Годы соединения внешних планет (1989 год) и противостояния Юпитера с Сатурном и Ураном (1990 год) и с Ураном и Нептуном (1991 год) разметили двугорбый максимум солнечной активности 1989–1991 годов. Небывало быстрым за всё время инструментальных наблюдений ростом активности и мощными вспышками (март и октябрь 1989, май 1990 и июнь 1991) отличился 22-й цикл.

Рост активности Солнца регистрируется усилением электромагнитного излучения и солнечного ветра, причем при вспышках мощность радиоизлучения на волне 10,7 см возрастает в 10–1000 раз, рентгеновского излучения – в 7–600 раз, а корпускулярного потока – в 100 раз и более. Электромагнитные волны (свет) достигают Земли за 8,3 минуты, а корпускулы – за 15–30 часов, вызывая полярные сияния и магнитные бури.

Возмущения геомагнитного поля повторяются с 27,28-суточным периодом обращения центров активности Солнца, а в целом контролируются его 11- и 22-летними циклами. В противофазе с 22-летним циклом и в связи с изменением напряженности геомагнитного экрана колеблется интенсивность доходящего до Земли корпускулярного потока галактического происхождения. В историческом интервале изменения напряженности поля выделяются 60-, 110-, 200-, 300-, 500-, 800-, 1000-, 1600-, 2100-, 3200-, 7800-летние гармоники, из которых 8000-, 1600- и 500-летние сравнительно амплитудные. Все вариации геомагнитного поля характеризуют колебания активности Солнца.

Природа земли и жизни

Подняться наверх