Читать книгу Природа земли и жизни - Вадимир Голубев - Страница 9

Часть I. Динамика Земли
Глава 1. Природа геоматрицы
Геоматрица и расслоение Земли

Оглавление

Размерность ячеек сети планетарной трещиноватости также проступает в блоково-слоистом строении литосферы, которое выказывает трехмерную структуру матрицы геодинамического поля, повторяющей изометрию земного шара. Ранжированные интервалы (шаги) между разломами высшего ранга и опознаются в геофизическом разрезе Земли, размеченном отражениями и преломлениями сейсмических волн, а они отмечают изменения физических свойств и минерального состава сфер (рис. 7).


Рис. 7. Геофизический разрез Земли


Раздел металлического ядра (субъядра) и его расплавленной оболочки находится в 1220 км от центра Земли (на глубине 5150, шаг 1200 км), нечеткий раздел ядра и пластичной силикатной мантии – в 3480 км (на глубине 2890, шаг 3780 км), а нечеткий раздел нижней и верхней мантии – в 5700 км (на глубине 670, шаг 5160 км). Радиус Земли составляет 6371 км (шаг 6360 км). Средняя толщина упруговязкой литосферы составляет на континентах и в океанах 200–250 км (шаг 225 км) и 60–80 км (шаг 63 и 85 км) соответственно, а толщина жесткой коры 35 и 11 км (шаг 42 и 10 км) соответственно.

Ранжированный шаг геоматрицы усматривается даже в глубинном строении Луны: ее радиус равен 1738 км (шаг 1740 км), а радиус нечеткого ядра – 170–360 км (шаг 225 км). Основание литосферы (верхней мантии) отстоит от центра Луны в среднем на 1300 км (шаг 1200 км), а толщина литосферы составляет от 300 до 480 км (двойной шаг 225 км). При этом толщина коры возрастает от 60 км (шаг 63 км) на видимой океанической стороне Луны до 100 км (шаг 85 км) и более на обратной материковой стороне.

Еще удивительнее соразмерность блоков земной коры с астероидами и малыми спутниками: их типичные размеры, по данным В. А. Бронштейна, составляют 225, 80, 35, 11 и 2,2 км (шаг 225, 85, 42, 10 и 2,5 км). Всё это свидетельствует о сходной дискретности динамических матриц тел Солнечной системы и попутно напоминает о трактовке пояса астероидов между Марсом и Юпитером как остатков планеты Фаэтон.

Расслоение Земли продолжается в стратификации атмосферы, соразмерной с шагом сети разломов. Их максимальный шаг (7740 км) близок радиусу Земли (шаг 6360 км) вкупе с атмосферой, которая рассеивается на высоте 1200 км (шаг 1200 км) и исчезает выше высоты 1800–2000 км (шаг 1740 км), а в основной массе сосредоточена ниже высоты 100–120 км (полшага от 225 км). Атмосфера по перепадам температур разделяется на тропосферу, стратосферу, мезосферу и термосферу, которые ограничены высотами 12–18, 50–55, 85 и 1200 км (шаг 10, 21, 63, 85 и 1200 км).

Шаг разломов проявлен и разделами магнитосферы: на высоте: 20–25 км (шаг 21 км) находится озоновый слой, на высотах 65–300 км (шаг 63 и 225 км) – основная зона ионосферы, на высоте 95–115 км (полшага от 225 км) – нижняя граница полярных сияний, а на высоте 400–550 км (шаг 540 км) – зона устойчивых красных дуг. Системное расслоение сфер Земли демонстрирует организующее значение матрицы геополя.

Сеть планетарной трещиноватости лучше выражена в жесткой земной коре, а хуже в упруговязкой литосфере, где только отчасти возможны разрывные деформации. Редкий каркас сети в виде зон мантийной конвекции и волноводов доходит до низов верхней мантии, где на глубинах 420–670 км (в среднем 540, шаг 540 км) регистрируются гипоцентры самых глубинных землетрясений. Совсем редкие подвижные зоны достигают переходного слоя перед земным ядром на глубинах 2700–2885 км (шаг 2580 км).

В земной коре, наоборот, проявлены всё меньшие по глубине и шагу разрывы, вплоть до сантиметровой кливажной отдельности горных пород, однотипной на обширных (до тысяч км) территориях. Поэтому разломы с шагом до 20 км предстают в качестве верхнекоровых зон, с шагом 40 и 65 км – коровых зон, с шагом 85 и 225 км – литосферных зон, а подвижные зоны с большим шагом – собственно мантийных зон. Последние размечают глубинную структуру Земли и геометрию конвективных потоков.

Глубина разломов ограничивает возможную амплитуду поднимания и опускания смежных блоков коры. Вертикальные разломные зоны по кинематике тоже сдвиговые и имеют вид «конского хвоста», то есть чешуйчатого в плане и разрезе веера (рис. 5: В). В общем дугообразные ступенчатые сбросы и взбросы выполаживаются по падению и восстанию, переходя в субгоризонтальные (межслоевые) сдвиги и надвиги. Такие листрические смещения разгружаются за счет микроповоротов блоков по вертикали с формированием их округлого профиля, дополняющего их округлое очертание в плане.

Инверсия горизонтального сдвига часто сопровождается инверсией поворота блока по вертикали с переходом сбросов во взбросы и наоборот. В обстановке бокового сжатия вертикальные повороты ведут к косому надвиганию или пододвиганию блоков, что лучше проявлено на активных окраинах континентов, где сдавливаются литосферные плиты, тоже поворачивающиеся (рис. 8). Так оформились морфоструктуры окраинных морей, оконтуренных островными дугами и глубоководными желобами.


Рис. 8. Тектонофизический разрез через Тихий океан

по прерывистой линии Японское море … Гавайский хребет … Кордильеры

1 – океан, 2 – земная кора, 3 – литосфера, 4 – астеносфера.

Обозначения разломных зон как на рис. 5.


Повороты подразумеваются и более крупными округлыми морфоструктурами, которые вписываются в угловатые континентальные и океанические платформы. Малый уклон основания платформ, заметный на материках только на протяжении тысяч километров по азимутальному (географическому) несогласию, выказывает направление доминирующего бокового давления на поворачивающуюся платформу. Поступательно-возвратные повороты платформ и блоков выступают в качестве разгрузочных для поворотов плит и представляют непосредственную силу тектогенеза во всех его видах.

Проступает первичность деформации сдвига (поворота) относительно деформаций сжатия, растяжения, кручения, изгиба и наряду с взаимосвязанностью горизонтальных и вертикальных движений земной коры. Циклическая смена типа деформаций при микроколебаниях скорости вращения Земли и подвижки всего ансамбля блоков коры обеспечивают цикличность тектонического развития, начиная с активизации сети планетарной трещиноватости (табл. 2). Тем самым формируется и поддерживается объемная структура геодинамической матрицы, в том числе мантийной конвекции. То же самое относится к динамике атмосферы, но гораздо более чуткой и подвижной.

Колебания скорости вращения и пульсации Земли разного ранга с разной силой и глубиной обновляют сеть планетарной трещиноватости, сохраняя ее постоянство. Старые разломы, залеченные магмой и минеральными растворами, активизируются и пробиваются наверх через наслоенные осадочные и вулканические толщи, вплоть до дневной поверхности. Одновременно навстречу им на поверхности образуются и циклически заглубляются молодые разломы, о чем свидетельствуют бескорневые нарушения в океанических осадках. Большинство из них возникает над древними разломами кристаллического фундамента и литифицированного осадочного чехла.


Таблица 2. Основные типы разломов при инверсиях скорости вращения Земли


Сеть планетарной трещиноватости обновляется в результате разрывной разгрузки упругих ротационных напряжений, накопленных в коре и литосфере в целом. Разгрузка дозируется реологическими свойствами структурно-вещественных уровней (слоев) литосферы, причем критическая нагрузка их напряжений соотносится с рангом (глубиной) разломов. Разномасштабная разгрузка напряжений выражается в смещениях блоков коры, соразмерных ранжированным ячейкам постоянной сети трещиноватости.

Но уже в нижней коре вследствие постоянных мощных литостатических нагрузок начинают преобладать пластические деформации, что воплощается в микроповоротах блоков с формированием овоидов фундамента платформ. Только при импульсном превышении упругими напряжениями предела текучести коры неприметный крип переходит в разрывные землетрясения с обновлением рельефа и сети трещиноватости.

Сеть планетарной трещиноватости поддерживается как неровным вращением Земли, так и собственно небесной механикой, которая расписывает перемещение векторов затменных лунно-солнечных гравитомагнитных воздействий по сети разломов. Затмения вызывают разгрузку накопленных ротационных напряжений в геодинамических узлах и зонах, что рассматривается в главе, посвященной механике землетрясений.

Тектонические напряжения в основном накапливаются в узлах подвижных зон между структурно-вещественными неоднородностями коры и литосферы, контрастные контуры которых и камуфлируют правильную геометрию сети. Особенности сети разломов каждого из континентов и океанов, олицетворяемые динамичным горным рельефом, характеризуют плитные неоднородности литосферы и запечатлели специфичность рисунка их кайнозойских напряжений, сопровождавших повороты каждой из них.

Природа земли и жизни

Подняться наверх