Читать книгу Современная логика - А. А. Ивин - Страница 6

Глава 1
Становление современной логики
4. Развитие современной логики

Оглавление

Современная логика отличается от традиционной логики методом построением специальных формализованных языков, или исчислений. Они позволяют избежать двусмысленности и логической неясности естественного языка. Новые методы дают логике такие преимущества, как большая точность формулировок, возможность изучения более сложных, с точки зрения логической формы, объектов. Многие из проблем, исследуемых в математической логике вообще невозможно сформулировать с использованием только традиционных методов. Современную логику иногда называют также «символической» или «математической».

Название «символическая логика» указывает на особенность применяемых логикой искусственных языков. Слова обычного языка заменяются в них специальными символами. Введение формализованного символического языка означает принятие особой теории логического анализа рассуждений.

Символы применял в ряде случаев еще Аристотель, а затем и все последующие логики. Однако в символической логике в использовании символики сделан качественно новый шаг: ее языки содержат только специальные символы.

Имя «математическая логика» призвано подчеркнуть сходство методов, применяемых в современной логике, с методами математики. В настоящее время имена «математическая логика» и «символическая логика» постепенно становятся все менее употребительными.

В середине XIX века ирландский математик Д. Буль истолковал умозаключение как результат решения логических равенств. В результате теория умозаключения приняла вид своеобразной алгебры, отличающейся от обычной алгебры лишь отсутствием численных коэффициентов и степеней. С работ немецкого логика Г. Фреге начинается применение логики для исследования оснований математики. Значительный вклад в развитие логики в дальнейшем внесли английские философы и логики Б. Рассел, А. Н. Уайтхед, немецкий математик Д. Гильберт и др. В 30-е годы фундаментальные результаты получили К. Гёдель, А. Тарский, А. Чёрч.

В классических, сложившихся первыми, разделах современной логики многое было отражением определенного своеобразия математического рассуждения. Кроме того, связь по преимуществу с одной наукой, математикой, поддерживала иллюзию, будто логика движется в силу только внутренних импульсов и ее развитие совершенно не зависит от эволюции теоретического мышления и не является в каком-либо смысле отображением последней.

Не успела классическая логика сложиться и окрепнуть, как началась энергичная ее критика. Эта критика велась с разных направлений. Результатом ее явилось возникновение целого ряда новых разделов современной логики, составивших в совокупности неклассическую логику. В ряде случаев оказалось, что реализованные при этом идеи активно обсуждались еще в античной и средневековой логике, но были основательно забыты в Новое время.

Неклассическая логика представляет собой совокупность достаточно разнородных логических теорий, возникших в известной оппозиции к классической логике и являющихся во многом не только критикой последней и попыткой ее усовершенствования, но также ее дополнением и дальнейшим развитием идей, лежащих в основе современной логики.

Экстенсивный рост логики не завершился и сейчас. Из числа зарубежных логиков, творчество которых оказало особенно заметное влияние на развитие современной логики в последние десятилетия, следует упомянуть У. Куайна, Г. Х. фон Вригта, Д. Дэвидсона, С. Крипке, Я. Хинтикку, Н. Решера и др.

Развитие логики в России

В России почти всегда были люди, стоявшие на уровне достижений логики своего времени и внесшие в ее развитие определенный вклад. История отечественной логики не богата, однако, именами.

В конце XIX – начале XX вв., когда научная революция в логике набирала силу, ситуация в отечественной логике была довольно сложной. И в теории, и в практике преподавания господствовала так называемая «академическая логика», избегавшая острых современных проблем и постоянно подменявшая логику невнятной методологией науки, изложенной к тому же по чужим и устаревшим образцам.

Ведущие русские философы не имели представления о современной им логике. Их рассуждения были пронизаны религией, постоянные споры о «соборности», «всеединстве» и т. п. – все это больше напоминало схоластику, чем философию, очищенную огнем Просвещения.

Не случайно М. М. Бахтин, всегда считавший себя философом и тяготевший, по его собственному признанию, к Марбургской школе неокантианства, называл отечественную философию конца XIX – начала XX вв. «мыслительством», которому еще предстояло подняться до уровня систематической и современной философии.

Судьба тех немногих русских ученых, находившихся на уровне достижений логики своего времени, чаще всего была незавидной. Сдержанное отношение к математической логике, разделявшееся даже многими русскими математиками, во многом осложнило творчество специалиста в области алгебры логики П. С. Порецкого. Он первым начал читать в России лекции по математической логике, но многие свои работы вынужден был публиковать за рубежом. Физик П. Эренфест еще в 1910 г. высказал гипотезу о возможности применения современной логики в науке и технике. В дальнейшем его гипотеза нашла воплощение в электронно-вычислительной технике.

Классическая логика подходит к противоречию несколько прямолинейно. Согласно одному из ее законов, из логически противоречивого высказывания следует все, что угодно. Это означает, что противоречие запрещается под угрозой разрушения теории. Однако никто реально не пользуется этим разрешением выводить из противоречий все, что попало. Практика научных рассуждений резко расходится в данном пункте с логической теорией. В качестве реакции на это рассогласование с конца 40-х гг. ХХ века начали разрабатываться различные варианты паранепротиворечивой логики. Она исключает возможность выводить из противоречия любые утверждения, так что противоречие перестает быть смертельной угрозой, нависшей над теорией. Этим не устраняется, конечно, принципиальная необходимость избавляться от противоречий в процессе дальнейшего развития теории. Одним из первых, в 1909 г., сомнения в неограниченной приложимости закона противоречия высказал Н. А. Васильев, только что вернувшийся после обучения в Геттингене. Он считал нужным ограничить также действие закона исключенного третьего, и в этом смысле явился одним из идейных предшественников интуиционистской логики.

Новаторские идеи Васильева были восприняты в штыки, истолковывались неверно, а то и просто объявлялись безграмотными. Васильев тяжело переживал подобную «критику» и вскоре оставил занятия логикой.

В 20-е гг. коммунистический режим не наложил еще запрета на занятия современной логикой. Интересных результатов добился в этот период М. Шёйнфинкель. Он высказал идею о возможности сведения фундаментального понятия функции к более элементарным понятиям, что положило начало исчислению ламбда-конверсии А. Чёрча и позднее комбинаторной логике Х. Б. Карри. В последней делается попытка полного исключения всех операторов, переменных и всех связок, кроме обозначения для применения сингулярной функции к ее аргументу. В итоге получается формализованный язык, в котором все простые символы, за исключением единственной связки, являются константами, и который, тем не менее, годится для получения некоторых или даже всех результатов, для которых используются переменные.

А. Н. Колмогоров предложил минимальную логическую систему, основанную на еще более решительном неприятии законов классической логики, содержащих отрицание, чем в интуиционистской логике. Он показал, что если в некоторой теореме классической логики, в которой нет связок, отличных от условной связи и отрицания, заменить вхождения каждой переменной на ее двойное отрицание, то получающаяся формула будет теоремой минимальной логики. В. И. Гливенко доказал, что формулировка классической логики получается из формулировки интуиционистской логики добавлением в качестве дополнительной аксиомы только закона исключенного третьего. В 40–50-е гг. А. А. Марков и его школа разработали новую, конструктивистскую интерпретацию интуиционистской логики.

Все это были интересные, но частные результаты, не оказавшие сколько-нибудь заметного влияния на развитие мировой логики. Систематические, получившие резонанс и за рубежом исследования в области современной логики начинаются у нас в стране только в 60-е гг. В этот период выходят в свет книга А. А. Зиновьева, посвященная многозначной логике, и его книга, обосновывающая оригинальную теорию логического следования.

Современная логика

Подняться наверх