Читать книгу Современная логика - А. А. Ивин - Страница 9

Глава 1
Становление современной логики
7. Современная логика и другие науки

Оглавление

В заключение этого, по необходимости краткого, разговора о том, чем занимается современная логика, следует сделать несколько замечаний о ее связях с другими науками. С момента своего возникновения логика была самым тесным образом связана с философией. В течение многих веков логика считалась, подобно этике, эстетике, психологии и др., одной из «философских наук». И только во второй половине XIX века формальная – к этому времени уже математическая – логика отпочковалась, как принято выражаться, от философии. Примерно в это же время от философии отделилась и стала самостоятельной научной дисциплиной и психология. Но если в психологии этот процесс был связан, прежде всего, с проникновением в нее опыта и эксперимента и сближением ее с другими эмпирическими науками, то в отделении формальной логики решающую роль сыграло проникновение в нее математических методов и сближение с математикой.

Самостоятельность, обретенная логикой, не означала, конечно, того, что она утратила всякую связь с философией. Просто в новую историческую эпоху прежняя связь приобрела другой характер. Взаимосвязь новой логики с философией не только не оборвалась, но, напротив, парадоксальным образом даже окрепла. Обращение к философии является необходимым условием прояснения формальной логикой своих оснований. С другой стороны, использование в философии понятий, методов и аппарата современной логики, несомненно, способствует более ясному пониманию самих философских понятий, принципов и проблем.

Тесная связь современной логики с математикой придает особую остроту вопросу о взаимных отношениях этих двух наук. Среди многих точек зрения, высказывавшихся по этому поводу, были и две крайние, ведущие, в общем-то, к тому же самому конечному результату – объединению математики и логики в единую научную дисциплину, сведению их в одну науку. Согласно Г. Фреге, Б. Расселу и их последователям математика и логика – это всего лишь две ступени в развитии той же самой науки. Математика может быть полностью сведена к логике, и такое чисто логическое обоснование математики позволит установить ее истинную и наиболее глубокую природу.

Этот подход к обоснованию математики получил название логицизма. Наиболее законченное изложение он нашел в изданном в 1910–1913 годах трехтомном труде «Principia Mathematica» написанном Б. Расселом совместно с А. Уайтхедом. Сторонники логицизма добились определенных успехов в прояснении основ математики. В частности, было показано, что математический словарь сводится к неожиданно краткому перечню основных понятий, которые принадлежат словарю чистой логики. Вся существующая математика была сведена к сравнительно простой и унифицированной системе исходных, принимаемых без доказательства положений, или аксиом, и правил вывода из них следствий, или теорем.

Однако в целом логицизм оказался утопической концепцией. «Математика не выводима из формальной логики, – подводит итог математик и логик Д. Бочвар, – ибо для построения математики необходимы аксиомы, устанавливающие факты из области объектов, и, прежде всего, – существование в последней определенных объектов. Но такие аксиомы обладают уже внелогической природой».

Другой формой объединения математики и логики в одну науку было объявление математической, или современной, логики одним из разделов современной математики. Многие математики и сейчас еще считают главной – если не единственной – задачей математической логики уточнение понятия математического доказательства и исключение парадоксальных, противоречащих интуиции утверждений из математических теорий. «Математическая логика, – пишет, например, английский логик Р. Гудстейн, – имеет своей целью выявление и систематизацию логических процессов, употребляемых в математическом рассуждении, а также разъяснение математических понятий. Сама она является ветвью математики, использующей математическую символику и технику, ветвью, развивающейся в целом в течение последних ста лет, и притом такой, которая по своей плодотворности, по силе и важности своих открытий вполне может претендовать на место в авангарде современной математики». Тенденция включать математическую логику в число математических дисциплин и видеть в ней только теорию математического доказательства является, конечно, ошибочной. На самом деле задачи логики гораздо шире. Она исследует основы всякого правильного рассуждения, а не только строгого математического доказательства, и ее интересует связь между посылками и следствиями в любых областях рассуждения и познания, а не только в одной лишь математике. Математическая логика, истолкованная исключительно как один из разделов математики, не только лишается способности прояснять и уточнять основания математики, но и сама становится непостижимой.

С первых дней своего возникновения современная логика способствовала решению логических проблем и преодолению трудностей, встававших перед математикой. Каждый новый шаг в прогрессе логики быстро сказывался на развитии математической науки. С другой стороны, без использования математических методов и понятий не было бы и современной логики. Но это не означает, разумеется, что одна из этих наук должна быть поглощена другой. Тенденция ставить логику на службу, прежде всего, математике является, однако, по-своему показательной. Она выразительно подчеркивает тесную взаимосвязь логики и математики, их плодотворное и взаимобогащающее воздействие друг на друга.

Современная логика тесно связана также с кибернетикой – наукой о закономерностях управления процессами и системами в любых областях: в технике, в живых организмах, в обществе. Основоположник кибернетики Н. Винер не без оснований подчеркивал, что само возникновение кибернетики было бы немыслимо без математической логики. Автоматика и электронно-вычислительная техника были бы невозможны без использования алгебры логики – этого исторически первого раздела современной логики. В управляющих схемах, применяемых в ЭВМ, значительное место занимают релейно-контактные схемы, моделирующие логические операции. Описание таких операций, даваемое логикой, способствует детальному анализу логического строения мысли и открывает поразительные перспективы автоматизации логических процессов, богатые возможности использовать для их осуществления автоматические машины. «Математическая логика, – заключает математик Г. Поваров, – является необходимым инструментом для машинизации умственного труда».

Современная логика находит широкие приложения не только в кибернетике, но и во многих других областях науки и техники. Очерчивая эти приложения, американский логик Э. Беркли пишет: «Математическая логика используется при исследовании правил, условий и договоров, при проектировании электрических схем для вычислительных машин, телефонных систем и регулирующих устройств, при программировании автоматических вычислительных машин и вообще при описании и проектировании многих типов схем и механизмов». Столь широкие технические приложения современной логики покажутся особенно впечатляющими, если вспомнить, что еще лет пятьдесят тому назад она казалась большинству весьма абстрактной математической дисциплиной, далекой от практического применения.

Направления современных логических исследований

Сейчас логический анализ правильного мышления активно ведется в целом ряде как давно освоенных, так и новых областей. Самым общим образом их можно обозначить так:

1. Исследование логических особенностей дедуктивных наук. Этот раздел достаточно глубоко и всесторонне разработан математиками и логиками. Многие результаты, полученные здесь (например, теорема Гёделя о неполноте и др.) имеют принципиальное философско-методологическое значение.

2. Применение логического анализа к опытному знанию. К этой сфере относятся изучение логической структуры теорий, способов их эмпирического обоснования, исследование различного рода правдоподобных рассуждений (индуктивный вывод, аналогия, моделирование, методы установления причинной связи на основе наблюдения и эксперимента и т. п.), трудностей применения теорий на практике и т. д. Особое место занимают проблемы, связанные с изучением смыслов и значений теоретических и эмпирических терминов, с анализом семантики таких ключевых терминов, как закон, факт, теория, система, измерение, вероятность, необходимость и т. д.

В последнее время существенное внимание уделяется логическому исследованию процессов формирования, роста и развития знания. Они имеют общенаучный характер, но пока изучаются преимущественно на материале естественнонаучных теорий. Были предприняты, в частности, попытки построения особой диахронической логики для описания развития знания.

3. Применение логического анализа к оценочно-нормативному знанию. Сюда относятся вопросы семантики оценочных и нормативных понятий, изучение структуры и логических связей высказываний о ценностях, способов их обоснования, анализ моральных, правовых и других кодексов и т. д. Тема ценностей стала одной из центральных в сегодняшней методологии. Знание не сводимо к истине, оно включает также ценности. Без них нет ни гуманитарной, ни естественной науки. Всякая научная теория включает ценности, и притом в самой разнообразной форме: в форме иерархии своих положений, в форме ценностных составляющих господствующей парадигмы, (номинальных) определений, конвенций и т. д. Интенсивные исследования в этой области показали несостоятельность неопозитивистского требования исключения ценностей из науки. Это требование несовместимо не только с реальной практикой этики, эстетики, политэкономии и подобных им дисциплин, непосредственно занятых обоснованием и утверждением определенных ценностей, но и с практикой научного познания в целом, которое, как и всякая человеческая деятельность, немыслимо без целей и иных ценностей. В изучении внутренних и внешних ценностей научных теорий важную роль призвана играть и логика.

4. Логический анализ приемов и операций, постоянно используемых во всех сферах мыслительной деятельности. К ним относятся объяснение, понимание, предвидение, определение, обобщение, классификация, абстрагирование, идеализация, сравнение, экстраполяция, редукция и т. п.

5. Применение логического анализа для исследовании наиболее важных категорий («причинность», «детерминизм», «онтологическая, или физическая, необходимость», «научный закон», объяснение, предсказание, понимание и др.).

Этот краткий перечень областей и проблем современных логических исследований не является, конечно, исчерпывающим. Но уже он показывает как широту интересов современной логики, так и сложность стоящих перед нею задач.

Пока у читателя есть только общее представление о том, чем занимается современная логика. Трудно говорить поэтому о каких-либо деталях ее отношений с другими науками. Нет также возможности привести конкретные примеры применений логики для решения содержательно интересных проблем. К этим вопросам целесообразно вернуться позднее, в заключительном разделе книги.

Современная логика

Подняться наверх