Читать книгу Mechanics: The Science of Machinery - A. Russell Bond - Страница 29

INANIMATE MATTER IN CONTINUAL MOTION

Оглавление

Table of Contents

When working with minute intervals of time many factors must be considered which are not even thought of in machines of grosser proportions. It never occurs to the man in the street that not only the animate world but the inanimate as well is in ceaseless and variable motion. If our eyes were capable of taking in minute microscopic details, we should see that everything is expanding or contracting, swelling or shriveling, twisting and warping in response to the atmospheric changes. Our steel bridges and skyscrapers are in constant motion; solid concrete dams must be provided with expansion joints; the Washington Monument goes through a diurnal gyration in response to the sun’s rays. Of course all this motion is almost immeasurably small. A bar of steel a mile long will expand ⅖ of an inch for every increase of a degree Fahrenheit in temperature. The expansion of a hairspring, which may be nine or ten inches long, is infinitesimally small and yet this must be considered by the watchmaker. We must remember that the escapement mechanism divides the day into 432,000 parts, each of which contains some minute error, for absolute perfection is impossible, and if we add up all these 432,000 errors they must not foot up to more than a second per day. If the hairspring expands ever so slightly its power is weakened, but this loss of power is compensated by an ingenious form of balance wheel. The rim is in two parts, half of it being attached to one spoke of the wheel and the other half to the other, as shown in Figure 28. Each half rim is formed of two strips of metal, an inner strip of steel, and an outer strip of brass fused together. Brass expands and contracts almost twice as much as steel, and hence when there is a rise of temperature the rim sections tend to curl in, bringing their center of gravity nearer the center of the wheel and making less of a load for the weakened hairspring to move, while on the other hand, when the spring is contracted by cold, the rims spread out slightly, giving it a greater load to oscillate. The weight of the balance wheel is thus automatically adjusted against variations in power of the spring.


FIG. 28.—THE SELF-CORRECTING BALANCE WHEEL OF A WATCH

Aside from this automatic variable adjustment, the balance wheel must have a primary permanent adjustment. The rim of the wheel is loaded by means of small screws. Screws placed near the free ends of the rim sections will have a greater inward or outward play as the rim contracts and expands, and by their locations in different positions on the rims the balance wheel may be adjusted with great accuracy to compensate for temperature variation in the hairspring.

Mechanics: The Science of Machinery

Подняться наверх