Читать книгу Mechanics: The Science of Machinery - A. Russell Bond - Страница 35
A 4,000-FOOT HEAD OF WATER
ОглавлениеA notable illustration of such a plant is the great installation at Big Creek, Cal. Big Creek, despite its name, used to be a small stream flowing down the mountains into a canyon. One would hardly suppose that it was capable of yielding much power, but it had its source high up in the Sierras and was fed mainly by melting snows. In the springtime, it swelled to a good-sized torrent. By building three dams near the top of the mountain, a lake was formed in which the water of the melting snow was impounded, so that a steady stream of water could be supplied the year round for power purposes. But even so, the stream hardly amounts to very much if we consider only the quantity of water that passes through it. The particular advantage of this installation is the fact that in a distance of six miles from the dam the creek falls 4,000 feet.
An inhabitant of the Eastern States who is unused to mountain heights may gain some conception of the meaning of this elevation by gazing up to the pinnacle of the Woolworth Tower, which rises 795 feet above street level, then mentally multiplying its altitude by five. Evidently even a small stream of water dropping from such an elevation would develop an enormous amount of power. In fact, it was considered inexpedient to use the entire fall at a single drop and so it was divided into two stages. The water is carried through a tunnel three-quarters of a mile long and then through a flow pipe along the face of the mountain to a point where it may drop 2,000 feet to the first power plant. After passing through this plant the water is discharged into the creek and is then diverted into a second tunnel four miles long and a series of steel conduits to a point from which it may drop 2,000 feet more to the second power plant. In each power house there are two electric generators, each fitted with a pair of Pelton wheels. These wheels are a little less than eight feet in diameter and each one develops 23,000 horsepower.
The water is directed into the buckets of the Pelton wheel in a stream six inches in diameter, and it issues from the nozzle with a velocity of 300 feet per second or about 210 miles per hour. A jet of water is almost like a solid bar of wood. In fact, it is impossible to chop through it with an ax. The water would swing the ax out of one’s hand before it got part way through the jet. Traveling at such a high speed the friction is so great that it would tear the skin off one’s hands, if it did not actually tear the hand off the arm, and yet it strikes the buckets of the wheels with no shock at all, for the first part of the bucket it touches is nearly parallel to the jet, and as the water sweeps around the curved face of the bucket it loses practically all of its pressure and velocity and falls into the tail race. The electric power generated by the two plants is stepped up to 150,000 volts and sent out over transmission lines to points of service. The street cars of Los Angeles are connected by a 240-mile electric harness to the hydraulic horses of Big Creek.
Powerful as this stream is, a still higher head is used in Switzerland, at Lake Fully, where there is a drop of over a mile in a distance of 2.8 miles. The water is carried by a short tunnel through the mountain, and then makes a drop of over 5,000 feet to the power plant, where it strikes the Pelton wheels at a velocity of 400 miles per hour, or about seven times the speed of a fast express train.