Читать книгу Глоссариум по искусственному интеллекту: 2500 терминов - Александр Николаевич Чашин, Инна Евгеньевна Скворцова, Александр Николаевич Афонин - Страница 11
Глоссариум по искусственному интеллекту
«И»
ОглавлениеИгровая площадка TensorFlow (TensorFlow Playground) – это инструмент, который поможет вам понять идею нейронных сетей без сложных математических вычислений. TensorFlow Playground, веб-приложение, написанное на JavaScript, которое позволяет вам играть с настоящей нейронной сетью, работающей в вашем браузере, и нажимать кнопки и настраивать параметры, чтобы увидеть, как это работает.
Игровой ИИ (Game AI) – это форма ИИ, характерная для игр, которая использует алгоритм для замены случайности. Это вычислительное поведение, используемое в персонажах, не являющихся игроками, для генерации интеллекта, подобного человеческому, и основанных на реакции действий, предпринимаемых игроком.
Иерархическая кластеризация (Hierarchical clustering) – это алгоритм машинного обучения без контроля, который используется для группировки непомеченных точек данных, имеющих сходные характеристики. Алгоритмы иерархической кластеризации делятся на две категории. Агломерационные иерархические алгоритмы. В агломерационных иерархических алгоритмах каждая точка данных обрабатывается как один кластер, а затем последовательно объединяется или агломерирует (подход снизу вверх) пары кластеров. Иерархия кластеров представлена в виде дендрограммы или древовидной структуры. Разделительные иерархические алгоритмы. С другой стороны, в разделительных иерархических алгоритмах все точки данных обрабатываются как один большой кластер, а процесс кластеризации включает в себя разделение (нисходящий подход) одного большого кластера на различные маленькие кластеры.
Иерархический файл (Hierarchical file) – этот файл содержит информацию, собранную по нескольким единицам анализа в разных типах записей. Например, физическая жилая структура может быть одной единицей, а отдельные люди в структуре – другой. Примером может служить Текущее обследование населения: годовой демографический файл, в котором есть единицы анализа домохозяйства, семьи и человека. Исследования, включающие данные для разных единиц анализа, часто связывают эти единицы друг с другом, так что, например, можно анализировать людей по мере того, как они группируются в структуру.
Избирательное линейное разрешение определенного предложения (также просто разрешение SLD) (Selective Linear Definite clause resolution) – это основное правило вывода, используемое в логическом программировании. Это уточнение решения, которое является и правильным, и полным опровержением оговорок Хорна.
Извлечение знаний (Knowledge extraction) – это извлечение существующего содержимого из структурированных или неструктурированных баз данных. Создание знаний из структурированных (реляционные базы данных, XML) и неструктурированных (текст, документы, изображения) источников. Полученные знания должны быть в машиночитаемом и машино-интерпретируемом формате и должны представлять знания таким образом, чтобы облегчить вывод. Хотя он методически похож на извлечение информации (NLP) и ETL (хранилище данных), основным критерием является то, что результат извлечения выходит за рамки создания структурированной информации или преобразования в реляционную схему. Это требует либо повторного использования существующих формальных знаний (повторное использование идентификаторов или онтологий), либо генерации схемы на основе исходных данных.
Извлечение сущностей (Entity extraction) – это общий термин, относящийся к процессу добавления структуры к данным для того, чтобы машина смогла их прочитать. Извлечение сущностей может выполняться человеком или с помощью модели машинного обучения.
Изучение онтологий (Ontology learning) —– это подзадача извлечения информации. Ее целью является полуавтоматическое извлечение соответствующих понятий и отношений из заданного наборов данных для формирования онтологии. «Онтология» – философская наука о бытии, основных видах и свойствах бытия. Автоматическое создание онтологий – задача, затрагивающая многие дисциплины. Как правило, процесс начинается с извлечения терминов и понятий или именных словосочетаний из обычного текста с использованием метода извлечения терминологии. Обычно для этого используются лингвистические процессы (например, маркировка частей речи, фрагментация фраз).
Изучение признаков или обучение представлению (Feature learning) – это набор методов, которые позволяют системе автоматически обнаруживать представления, необходимые для обнаружения или классификации признаков из необработанных данных. Это заменяет ручную разработку функций и позволяет машине изучать функции и использовать их для выполнения конкретной задачи.
ИИ бенчмарк (AI benchmark) – это эталонный тест ИИ, бенчмаркинг систем ИИ, для оценки возможностей, эффективности, производительности и для сравнения ИНС, моделей машинного обучения (МО), архитектур и алгоритмов при решении различных задач ИИ создаются и стандартизируется специальные эталонные тесты, бенчмарки. Например, Benchmarking Graph Neural Networks – бенчмаркинг (эталонное тестирование) графовых нейронных сетей (ГНС, GNN) – обычно включает инсталляцию конкретного бенчмарка, загрузку исходных датасетов, проведение тестирования ИНС, добавление нового датасета и повторение итераций
ИИ вендор (AI vendor) – это поставщик средств (систем, решений) ИИ.
ИИ камера (AI camera) – это камера с искусственным интеллектом, ИИ-камера, цифровые фотокамеры нового поколения – позволяют анализировать снимки, распознавая лица, их выражение, контуры объектов, текстуры, градиенты, характер освещения, что учитывается при обработке снимков; некоторые ИИ-камеры способны самостоятельно, без участия человека, делать снимки в моменты, которые камере покажутся наиболее интересными, и др.
ИИ мультиопыт (Multi-experience AI) – это ИИ, который описывает взаимодействия, которые происходят в различных цифровых точках соприкосновения (например, в Интернете, мобильных приложениях, диалоговых приложениях, AR, VR, MR и подобных устройств), с использованием комбинации способов взаимодействия для поддержки непрерывного и последовательного опыта пользователя. Возможности включают отсутствие касания, управление голосом, взглядом и жестом.
ИИ рабочая станция (AI workstation) – это рабочая станция (РС) со средствами (на основе) ИИ; ИИ РС, специализированный настольный ПК для решения технических или научных задач, задач ИИ; обычно подключается к ЛВС с многопользовательскими ОС, предназначается преимущественно для индивидуальной работы одного специалиста.
ИИ реального времени (Realtime AI) – это система искусственного интеллекта реального времени, ИИ реального времени, системы и средства ИИ реального времени находят применение в робототехнике, в космической технике, в видеоиграх; они используются для имитации разумного поведения, свойственного человеку, при решении текущих задач с учётом окружающей обстановки, входных данных и других факторов. При этом важно, чтобы решение (реакция системы) выдавалось в ответ на управляющие воздействия за установленное время.
ИИ рынок чипов (AI chipset market) – это рынок чипсетов для систем с искусственным интеллектом (ИИ),
ИИ сервер (AI server) – это сервер со средствами (на основе) ИИ; сервер, обеспечивающий решение задач ИИ.
ИИ суперкомпьютер (AI supercomputer) – это суперкомпьютер для задач искусственного интеллекта, суперкомпьютер для ИИ, характеризуется ориентацией на работу с большими объёмами данных
ИИ термин (AI term) – это термин из области ИИ (из терминологии, словаря ИИ), например, in AI terms – в терминах ИИ (на языке ИИ)
ИИ терминология (AI terminology) – это терминология искусственного интеллекта, терминология ИИ, совокупность специальных терминов, относящихся к области ИИ
ИИ ускорение (AI acceleration) – это ускорение вычислений, связанных с ИИ, для этой цели применяют специализированные аппаратные ускорители ИИ
ИИ ускоритель (AI accelerator) – это специализированная микросхема, повышающая скорость и эффективность обучения и тестирования нейронных сетей. Однако, для полупроводниковых микросхем, включая большинство ускорителей ИИ, существует теоретический минимальный предел потребления энергии. Уменьшение потребления возможно только при переходе на оптические нейронные сети и оптические ускорители для них.
ИИ чипсет (AI chipset) – это чипсет для систем с ИИ, например, AI chipset industry – индустрия чипсетов для систем с ИИ, AI chipset market – рынок чипсетов для систем с ИИ.
ИИ, основанный на физике (PIAI) (Physics-based AI PIAI) – это ИИ, который объединяет физические и аналоговые принципы, регулирующие законы и знания предметной области в модели ИИ.
ИИ-аппарат (AI hardware) – это аппаратное обеспечение ИИ, аппаратные средства ИИ, аппаратная часть инфраструктуры [системы] искусственного интеллекта, ИИ-инфраструктуры.
ИИ-инженер (AI engineer) – это инженер по системам с ИИ.
ИИ-инжиниринг (AI engineering) — это перевод технологий ИИ с уровня НИОКР, экспериментов и прототипов на инженерно-технический уровень, с расширенным внедрением методов и средств ИИ в ИТ-системы для решения реальных производственных задач компании, организации. Одна из стратегических технологических тенденций (трендов), которые могут кардинальным образом повлиять на состояние экономики, производства, финансов, на состояние окружающей среды и вообще на качество жизни человека и человечества.
ИИ-оптимизированный (AI-optimized) – это оптимизированный для задач ИИ или оптимизированный c помощью средств ИИ, например, AI-optimized chip – чип, оптимизированный для задач ИИ.
ИИ-покупатель (AI shopper) – это нечеловеческий экономический субъект, который получает товары или услуги в обмен на оплату. Примеры включают виртуальных личных помощников, интеллектуальную технику, подключенные автомобили и заводское оборудование с поддержкой Интернета вещей. Эти ИИ действуют от имени клиента-человека или организации.
ИИ-совместимое медицинское устройство (AI-enabled healthcare device) – это устройство с использованием ИИ для системы здравоохранения (медицинской помощи).
ИИ-совместимое устройство (AI-enabled device) – это устройство, поддерживаемое системой с искусственным интеллектом (ИИ-системой), например, интеллектуальный робот.
ИИ-совместимый (AI-enabled) – это аппаратное или программное обеспечение с использованием ИИ, использующий ИИ, оснащённый ИИ, например, AI-enabled tools – инструментальные средства с ИИ.
Именованные графы (Named graph) – это ключевая концепциея семантической веб- архитектуры, в которой набор операторов структуры описания ресурсов (граф) идентифицируется с помощью URI (Унифицированный идентификатор ресурса – уникальная последовательность символов, идентифицирующая логический или физический ресурс, используемый веб-технологиями), что позволяет делать описания этого набора признаков, таких как контекст, информация о происхождении или другое. [26]
Имитация отжига (SA) (Simulated annealing) – это вероятностный метод аппроксимации глобального оптимума заданной функции. В частности, это метаэвристика для аппроксимации глобальной оптимизации в большом пространстве поиска для задачи оптимизации.
Импульс (Momentum) – это метод машинного обучения, реализующий импульсный алгоритм градиентного спуска, очень эффективной техники в котором шаг обучения зависит не только от градиента текущего шага для направления поиска, а также от градиента прошлых шагов, которые непосредственно предшествовали ему чтобы определить направление движения. Импульс включает в себя вычисление экспоненциально взвешенного скользящего среднего градиента с течением времени, аналогичного импульсу в физике. Импульс способствует обучению не застревать в локальных минимумах.
Инвариантность размера (Size invariance) в задаче классификации изображений – это способность алгоритма успешно классифицировать изображения даже при изменении размера изображения. Например, алгоритм все равно может идентифицировать кошку независимо от размера изображения – будь то 2 Мб или 200 Кб пикселей. Обратите внимание, что даже самые лучшие алгоритмы классификации изображений по-прежнему имеют практические ограничения на неизменность размера. Например, алгоритм (или человек) вряд ли правильно классифицирует изображение кошки, занимающее всего 20 пикселей.
Индивидуальная справедливость (Individual fairness) – это метрика справедливости, которая проверяет, одинаково ли классифицируются похожие лица. Например, Brobdingnagian Academy может захотеть удовлетворить индивидуальную справедливость, гарантируя, что два студента с одинаковыми оценками и результатами стандартизированных тестов с одинаковой вероятностью будут приняты. Обратите внимание, что индивидуальная справедливость полностью зависит от того, как вы определяете «сходство» (в данном случае оценки и баллы за тесты), и вы можете столкнуться с риском возникновения новых проблем со справедливостью, если ваша метрика схожести пропускает важную информацию (например, строгость учащегося). учебный план).
Индуктивная предвзятость алгоритма обучения (Inductive Bias) – это набор предположений, которые обучаемая система использует для прогнозирования результатов на основе вводных параметров, с которыми она ещё не сталкивалась.
Индуктивное рассуждение (Inductive reasoning) – это метод рассуждения, который использует предпосылки для предоставления доказательств в поддержку вывода. В отличие от дедуктивного рассуждения, индуктивное рассуждение работает как нисходящая логика, которая дает заключение путем обобщения или экстраполяции от частных случаев к общим правилам.
Индукция (Induction) (от латинского inductio – «наведение») – это метод получения логического вывода при помощи перехода от частного к общему, т.е. индукция является противоположностью дедукции. В этом методе работают не только законы логики, но и математические, психологические и фактические представления.
Индустриальный Интернет (Industrial Internet) – это концепция построения информационных и коммуникационных инфраструктур на основе подключения к информационно-телекоммуникационной сети «Интернет» промышленных устройств, оборудования, датчиков, сенсоров, систем управления технологическими процессами, а также интеграции данных программно-аппаратных средств между собой без участия человека.
Индустрия ИИ (AI industry) – например, commercial AI industry – это коммерческая индустрия ИИ, коммерческий сектор индустрии ИИ.
Инженерия знаний (Knowledge engineering) – это создание систем, основанных на знаниях, включая все научные, технические и социальные аспекты. Также, это область искусственного интеллекта, которая создает правила, применяемые к данным, чтобы имитировать мыслительный процесс человека-эксперта. Он изучает структуру задачи или решения, чтобы определить, как делается вывод.
Инкрементное обучение (Incremental learning) – это пошаговое обучение является методом машинного обучения, в котором входные данные непрерывно используются для расширения знаний существующей модели для дальнейшего обучения модели. Оно представляет собой динамический метод обучения, который можно применять, когда данные обучения постепенно становятся доступными с течением времени или их размер выходит за пределы системной памяти. Задачей инкрементального обучения является адаптация модели обучения к новым данным, не забывая при этом уже имеющиеся знания.
Инструмент White papers (White papers) – это маркетинговый инструмент, часть контентной стратегии компании, представляющий из себя мини-книгу о решении определённой проблемы.
Инструмент машинного обучения Pandas (сокращение от «panel-data-s») – это инструмент, используемый для исследования, очистки, преобразования и визуализации данных, поэтому его можно использовать в моделях машинного обучения и обучении. Это библиотека Python с открытым исходным кодом, построенная на основе NumPy. Pandas может обрабатывать три типа структур данных: серии, DataFrame и панель.
Инструменты Vital A.I. (Vital A.I.) – это инструменты для разработки программного обеспечения искусственного интеллекта и консультационные услуги. Vital Development Kit (VDK) устраняет самый большой источник затрат при разработке интеллектуальных приложений: человеческий труд по интеграции данных; управление потоком данных между людьми, устройствами, базами данных и потоками данных алгоритмической обработки.
Интегральная фотоника (Integrated photonics) – это направление фотоники, занимающееся разработкой и внедрением фотонных интегральных схем или оптических интегральных схем, которые могут обрабатывать и передавать световые, или оптические, сигналы (данные) – подобно тому, как электронные ИС работают с электронными сигналами (данными).
Интеграция данных (Data Integration) – это совокупность технических и деловых процессов, репликация и виртуализация данных. Интеграция данных используется для объединения информации из разрозненных источников в виде понятного и ценного набора данных для целей интеллектуальной обработки и бизнес-аналитики. Комплексное решение для интеграции данных предоставляет достоверные данные из различных локальных и облачных источников для обеспечения конвейера достоверных данных, готового к работе с DataOps.
Интегрированный ГП (Integrated GPU) – это интегрированный графический процессор, интегрированный ГП, расположенный на одном кристалле или в одной микросхеме с ЦП, как, например, он реализован в процессоре M1 корпорации Apple.
Интеллект (Intelligence) – это способность мозга решать интеллектуальные задачи путем приобретения, запоминания и целенаправленного преобразования знаний в процессе обучения на опыте и адаптации к разнообразным обстоятельствам.
Интеллект принятия решений (Decision intelligence DI) – это практическая дисциплина, используемая для улучшения процесса принятия решений путем четкого понимания и программной разработки того, как принимаются решения, и как итоговые результаты оцениваются, управляются и улучшаются с помощью обратной связи.
Интеллектуальная информационная система (Intelligent information system) – это взаимосвязанная совокупность программного обеспечения, основанная на технологиях машинного обучения и искусственного интеллекта, имеющая возможность хранения, обработки и выдачи информации, а также самостоятельной настройки своих параметров в зависимости от состояния внешней среды (исходных данных) и специфики решаемой задачи [27]. Также под интеллектуальной информационной системой понимают автоматизированную информационную систему, основанную на знаниях, или комплексе программных, лингвистических и логико-математических средств для реализации основной задачи – осуществления поддержки деятельности человека и поиска информации в режиме продвинутого диалога на естественном языке [28].
Интеллектуальная система (Intelligent system) – это техническая или программная система, способная решать задачи, традиционно считающиеся творческими, принадлежащие конкретной предметной области, знания о которой хранятся в памяти такой системы. Структура интеллектуальной системы включает три основных блока – базу знаний, решатель и интеллектуальный интерфейс [29].
Интеллектуальное управление (IA) (Intelligent control) – это дисциплина, в которой алгоритмы управления разрабатываются путем имитации определенных характеристик биологических систем, подпитываются последними достижениями в области вычислительной техники, и становится технологией, которая может открыть возможности для значительных технологических достижений.
Интеллектуальные агенты (Intelligent agents) – это программы, самостоятельно выполняющие задания, указанные пользователем или другими программами, в течение длительных промежутков времени, используются для помощи оператору или сбора информации.
Интеллектуальные задачи (Intellectual tasks) – это задачи, отыскание алгоритма решения которых связано с тонкими и сложными рассуждениями, логическими обобщениями и выводами, требующие большой изобретательности и высокой квалификации.
Интеллектуальные приложения (Intelligent Applications) – это программные комплексы или системы со встроенными или интегрированными технологиями искусственного интеллекта, такими как интеллектуальная автоматизация и аналитика на основе больших данных, интегрированные с подсистемой поддержки-принятия решений.
Интеллектуальный агент (Intelligent agent IA) – это компьютерная программная система, способная действовать независимо для достижения определенных целей и реагировать на людей или события, происходящие вокруг нее. Он запрограммирован с использованием искусственного интеллекта (ИИ) и оснащен датчиками, которые позволяют ему наблюдать и адаптироваться к ситуациям. ИА используются в областях, требующих взаимодействия с людьми, потому что они способны демонстрировать основные социальные навыки. Сегодняшние примеры IA включают Siri и Alexa. Они могут понять запрос и действовать самостоятельно, чтобы найти запрашиваемую информацию.
Интеллектуальный анализ данных (Data Mining) – это процесс анализа скрытых шаблонов данных в соответствии с различными перспективами для категоризации в полезную информацию, которая собирается и сводится воедино в общих областях, таких как хранилища данных, для эффективного анализа, и алгоритмы интеллектуального анализа данных, облегчающие принятие бизнес-решений и другие информационные требования, которые, в конечном счете, сокращают затраты и увеличивают доходы. Интеллектуальный анализ данных также известен как обнаружение данных и раскрытие познаний.
Интеллектуальный персональный помощник (также виртуальный помощник или персональный цифровой помощник, Intelligent personal assistant) – это программный агент, который может выполнять задачи или услуги для человека на основе команд или вопросов. Термин «чат-бот» иногда используется для обозначения виртуальных помощников, к которым обычно или конкретно обращаются через онлайн- чат. В некоторых случаях программы онлайн-чата предназначены исключительно для развлекательных целей. Некоторые виртуальные помощники могут интерпретировать человеческую речь и отвечать синтезированными голосами. Пользователи могут задавать вопросы своим помощникам, управлять устройствами домашней автоматизации и воспроизведением мультимедиа с помощью голоса, а также управлять другими основными задачами, такими как электронная почта, списки дел и календари, с помощью голосовых команд. [30]
Интерактивное машинное обучение (IML) (Interactive Machine Learning) – это разработка и реализация алгоритмов и интеллектуальных сред пользовательского интерфейса, которые облегчают машинное обучение с помощью взаимодействия с человеком. Это область развития искусственного интеллекта, в которой пользователи, как правило, не являющиеся экспертами, могут быстро создавать и тестировать модели машинного обучения. Эти модели могут обучаться вводу/выводу данных в реальном времени на примерах человека/компьютера. Так системы машинного обучения учатся у человека и адаптируются к нему, но в то же время человек получает обратную связь и адаптируется к системе.
Интернет медицинских вещей (Internet of Medical Things IoMT) – это класс умных медицинских устройств, ПО и отдельных смарт-услуг, имеющих возможность подключения и обмена данных в среде интернет, которые совершенствуют и развивают отрасль здравоохранения, помогают предоставлять помощь удаленно, автономно собирать информацию о пациенте. Такие умные устройства (гаджеты, датчики, измерители сердечного ритма и многие др.) собирают и обрабатывают данные, контролируют показатели здоровья, обрабатывают результаты анализов. Условно все устройства и решения IoMT в сфере медицины делятся на два типа: предназначенные для больниц и специалистов, которые в них работают; предназначенные для конечного потребителя, пациента.
Интернет-вещей (Internet of Things, IoT) – это концепция и основанная на ней вычислительная сеть, соединяющая вещи (физические предметы), оснащенные встроенными информационными технологиями для взаимодействия друг с другом или с внешней средой без участия человека.
Интероперабельность, совместимость (Interoperability) – это способность открытых систем использовать программы, выполняющиеся одновременно на различных платформах в общей сети, с возможностью обмена информацией между ними. Иначе говоря, программные компоненты системы, расположенные на разных аппаратных платформах в общей сети, должны быть способны работать как часть единой системы. Открытая интероперабельная система должна обладать способностью коммуникации и с другими уровнями АСУ предприятия, обеспечивая одновременно безопасность поступающей извне информации.
Интерпретация (Interpretation) – это действие по объяснению значения чего-либо или способ, которым что-то объясняется или понимается (словарь Вебстера). Интерпрета́тор – программа (разновидность транслятора), выполняющая интерпретацию. Интерпрета́ция – построчный анализ, обработка и выполнение исходного кода программы или запроса, в отличие от компиляции, где весь текст программы, перед запуском анализируется и транслируется в машинный или байт-код без её выполнения.
Интерпретируемость (Interpretability) – это способность объяснить или представить обоснование модели машинного обучения в понятных человеку терминах.
Интерфейс мозг-компьютер (Brain—computer interface), иногда называемый интерфейсом мозг-машина (brain—machine interface) – это прямой путь связи между электрической активностью мозга и внешним устройством, чаще всего компьютером или роботизированной конечностью. Исследования интерфейса мозг-компьютер начались в 1970-х годах Жаком Видалем из Калифорнийского университета в Лос-Анджелесе (UCLA) в рамках гранта Национального научного фонда, за которым последовал контракт с DARPA. Статья Видаля 1973 года знаменует собой первое появление выражения «интерфейс мозг-компьютер» в научной литературе.
Интерфейс прикладного программирования (Application programming interface) – это описание способов (набор классов, процедур, функций, структур или констант), которыми одна компьютерная программа может взаимодействовать с другой программой. Обычно входит в описание какого-либо интернет-протокола, программного каркаса (фреймворка) или стандарта вызовов функций операционной системы. Часто реализуется отдельной программной библиотекой или сервисом операционной системы. Используется программистами при написании всевозможных приложений.
Интерфейс распознавание голоса (Speech Recognition API, SRAPI). – это интерфейс, к лучшим из которых относят: Google Speech-to-Text, AssemblyAI, AWS Transcribe, DeepSpeech, Wav2Letter, SpeechBrain, Coqui.
Интерфейсный агент (Воплощенный агент) (Embodied agent (Also interface agent)) – это агент, который поддерживает интеллектуальное взаимодействие с пользователем. Он действует при формулировке запросов. Агент, который взаимодействует с окружающей средой через физическое тело или представлен графически, изображением человека или мультяшного персонажа, называется воплощенным агентом.
Интранет (Intranet) – это частная сеть внутри предприятия, которая используется для безопасного обмена корпоративной информацией и вычислительными ресурсами между сотрудниками. Интранет также можно использовать для работы в группах и телеконференций.
Инференс (Inference) – это обученная модель нейронной сети на новых данных для получения выходных данных.
Информатика (Computer science) – это наука о методах и процессах сбора, хранения, обработки, передачи, анализа и оценки информации с применением компьютерных технологий, обеспечивающих возможность её использования для принятия решений. Также под информатикой понимают изучение вычислений, автоматизации и информации. Информатика охватывает теоретические дисциплины (такие как алгоритмы, теория вычислений и теория информации) и практические дисциплины (включая проектирование и внедрение аппаратного и программного обеспечения). Информатика обычно считается областью академических исследований и отличается от компьютерного программирования.
Информатика медицинских изображений (Medical Imaging Informatics) – это подобласть медицинской информатики, в которой рассматриваются аспекты создания, обработки, управления, передачи, хранения, распространения, отображения, восприятия, конфиденциальности и безопасности изображений. Она пересекается со многими другими дисциплинами, такими как электротехника, компьютерные и информационные науки, медицинская физика, перцептивная физиология и психология, и развилась главным образом в радиологии.
Информатика поведения (Behavior informatics) – это область знаний, которая позволяет получить информацию о поведении и понимание поведения.
В отличие от прикладного анализа поведения с психологической точки зрения, BI создает вычислительные теории, системы и инструменты для качественного и количественного моделирования, представления, анализа и управления поведением отдельных лиц, групп и/или организаций.
Информационная интеграция (Information integration II) – это объединение информации из разнородных источников с различными концептуальными, контекстными и типографскими представлениями. Она используется в интеллектуальном анализе данных и консолидации данных из неструктурированные или полуструктурированные ресурсы. [31]
Информационная система (Information system) – это совокупность содержащейся в базах данных информации и обеспечивающих ее обработку информационных технологий и технических средств.
Информационная сфера (Information Sphere) – это совокупность информации, объектов информатизации, информационных систем, сайтов в информационно-телекоммуникационной сети Интернет, сетей связи, информационных технологий, субъектов, деятельность которых связана с формированием и обработкой информации, развитием и использованием этих технологий, обеспечивающих информационную безопасность, а также комплекс механизмов регулирования соответствующих общественных отношений
Информационная эффективность (Information efficiency) – это эффективность по отношению к априорным предпосылкам и приобретаемому опыту. Оценка информационной эффективности уже заложена в формулу Шолле, оценивающую интеллект.
Информационное общество (Information society) – это общество, в котором информация и уровень ее применения и доступности кардинальным образом влияют на экономические и социокультурные условия жизни граждан.
Информационное пространство (Information space) – это совокупность информационных ресурсов, созданных субъектами информационной сферы, средств взаимодействия таких субъектов, их информационных систем и необходимой информационной инфраструктуры.
Информационно-коммуникационные технологии (Information and communication technologies) – это совокупность информационных технологий, информационных систем и информационно-телекоммуникационных сетей, необходимых для реализации полномочий государственных органов и обеспечения их деятельности.
Информационные технологии (Information technologies) – это процессы, методы поиска, сбора, хранения, обработки, предоставления, распространения информации и способы осуществления таких процессов и методов.
Информацио́нный по́иск (Information Retrieval) – это процесс поиска неструктурированной документальной информации, удовлетворяющей информационные потребности, и наука об этом поиске. Информационный поиск связан с хранением, представлением и поиском информации, относящейся к конкретной проблеме пользователя. Ищущий информацию формулирует запрос, который сравнивается с представлениями документа. Пользователям предоставляются максимально похожие документы, которые могут быть актуальными по отношению к запросу на поиск информации.
Информация (Information) – это сведения (сообщения, данные) независимо от формы их представления.
Информация, составляющая коммерческую тайну (Information constituting a commercial secret) – это сведения любого характера (производственные, технические, экономические, организационные и другие), в том числе о результатах интеллектуальной деятельности в научно-технической сфере, а также сведения о способах осуществления профессиональной деятельности, которые имеют действительную или потенциальную коммерческую ценность в силу неизвестности их третьим лицам, к которым у третьих лиц нет свободного доступа на законном основании, и в отношении которых обладателем таких сведений введен режим коммерческой тайны.
Информированный поиск (также эвристический поиск) (Heuristic search techniques) – это стратегия поиска решений в пространстве состояний, в которой используются знания, относящиеся к конкретной задаче. Эвристическая функция на каждом шаге перебора оценивает альтернативы на основании дополнительной информации с целью принятия решения о том, в каком направлении следует продолжать перебор.
Инфраструктура ИИ (AI infrastructure) – это инфраструктура системы искусственного интеллекта, ИИ-инфраструктура, например, AI infrastructure research – исследования в области ИИ-инфраструктур
Искусственная жизнь (Artificial life) – это междисциплинарная область науки, изучающая вопросы создания, по аналогии с живыми системами, искусственных систем, представленных в виде компьютерных программ или роботов. Искусственная жизнь (часто сокращенно ALife или A-Life) – это область исследований, в которой исследователи изучают системы, связанные с естественной жизнью, ее процессами и ее эволюцией, с помощью моделирования с помощью компьютерных моделей, робототехники и биохимии. Дисциплина была названа Кристофером Лэнгтоном, американским биологом-теоретиком, в 1986 году. В 1987 году Лэнгтон организовал первую конференцию в этой области в Лос-Аламосе, штат Нью-Мексико. Есть три основных вида жизни, названные в честь их подходов: мягкая, основанная на программном обеспечении; жесткий, из метизов; и мокрый, из биохимии. Исследователи искусственной жизни изучают традиционную биологию, пытаясь воссоздать аспекты биологических явлений.
Искусственная нейронная сеть (Artificial Neural Network, ИНС) – это математическая модель (а также её программное или аппаратное воплощение), состоящая из слоёв «нейронов», передающих друг другу данные, и построенная по принципу организации и функционирования биологических нейронных сетей. Также, – это программа или аппаратура, моделирующие сеть, построенную на принципах взаимодействия клеток (нейронов, neurode) нервной системы человека. В аппаратной реализации ИНС представляет собой сеть из множества простых процессоров (units, формальных нейронов), объединённых в слои.
Искусственные языки (Сonstructed language) – это специализированные языки, в которых лексика, фонетика и грамматика были специально разработаны для воплощения определённых целей. Именно целенаправленность отличает искусственные языки от естественных. Иногда данные языки называют ненастоящими языками. Таких языков существует уже более тысячи, и постоянно создаются новые.
Искусственный интеллект (ИИ) (Artificial Intelligence) ― это компьютерная система, основанная на комплексе научных и инженерных знаний, а также технологий создания интеллектуальных машин, программ, сервисов и приложений (например, машинного обучения и глубокого обучения), имитирующая мыслительные процессы человека или живых существ, способная с определенной степенью автономности воспринимать информацию, обучаться и принимать решения на основе анализа больших массивов данных, целью создания которой является помощь людям в решении их повседневных рутинных задач [32].
Искусственный интеллект для ИТ-операций (Artificial Intelligence for IT Operations, AIOps) – это новая ИТ-практика, которая применяет искусственный интеллект к ИТ-операциям, чтобы помочь организациям разумно управлять инфраструктурой, сетями и приложениями для обеспечения производительности, отказоустойчивости, емкости, времени безотказной работы и, в некоторых случаях, безопасности. Перенося традиционные оповещения на основе пороговых значений и ручные процессы на системы, использующие преимущества искусственного интеллекта и машинного обучения, AIOps позволяет организациям лучше отслеживать ИТ-активы и предвидеть негативные инциденты и последствия до того, как они произойдут. AIOps – это термин, придуманный Gartner в 2016 году как отраслевая категория для технологии аналитики машинного обучения, которая улучшает аналитику ИТ-операций, охватывающую операционные задачи, включая автоматизацию, мониторинг производительности и корреляцию событий, среди прочего. Gartner определяет платформу AIOps следующим образом: «Платформа AIOps сочетает в себе функции больших данных и машинного обучения для поддержки всех основных функций ИТ-операций за счет масштабируемого приема и анализа постоянно растущего объема, разнообразия и скорости данных, генерируемых ИТ. Платформа позволяет одновременно использовать несколько источников данных, методы сбора данных, аналитические и презентационные технологии». По сути AIOps – это искусственный интеллект для управления ИТ на базе многослойной платформы, который автоматизирует обработку данных и принятие решения с помощью машинного обучения и аналитики больших данных, которые приходят с различных элементов ИТ-инфраструктуры в режиме реального времени
AIOps состоит из двух основных компонентов: «большие данные» и «машинное обучение». Таким образом, ИТ специалисты должны отойти от логгирования и отслеживания множества отдельных событий (siloed IT), которые активно используются сейчас, а положиться на машинное обучение и анализ данных, которые приходят от систем мониторинга, журналов нарядов на работы и т. д. [33].
Искусственный Интеллект на уровне человека (Human Level Machine Intelligence) – это синоним полного ИИ, завершенного ИИ, сильного ИИ. Этот термин обозначает степень развития искусственного интеллекта на уровне человека. Человеческий мозг является моделью для создания такого интеллекта.
Искусственный нейрон (Artificial neuron) – это математическая функция, задуманная как модель биологических нейронов, нейронная сеть. Разница между искусственным нейроном и биологическим нейроном представлена на рисунке.
Искусственные нейроны – это элементарные единицы искусственной нейронной сети. Искусственный нейрон получает один или несколько входных сигналов (представляющих возбуждающие постсинаптические потенциалы и тормозные постсинаптические потенциалы на нервных дендритах) и суммирует их для получения выходного сигнала (или активации, представляющего потенциал действия нейрона, который передается по его аксону). Обычно каждый вход взвешивается отдельно, а сумма проходит через нелинейную функцию, известную как функция активации или передаточная функция. Передаточные функции обычно имеют сигмовидную форму, но они также могут принимать форму других нелинейных функций, кусочно-линейных функций или ступенчатых функций. Они также часто являются монотонно возрастающими, непрерывными, дифференцируемыми и ограниченными.
Искусственный сверхинтеллект (Artificial Superintelligence) – это термин, который обозначает степень развития искусственного интеллекта, превосходящую человеческие возможности во всех аспектах. Термин «Искусственный интеллект», который широко используется с 1970-х годов, относится к способности компьютеров имитировать человеческое мышление. Искусственный сверхинтеллект делает шаг вперед и создает мир, в котором когнитивные способности компьютера превосходят человеческие.
Исполняемый код (Executable) – это исполняемая программа, иногда называемая просто исполняемым или двоичным файлом, заставляет компьютер «выполнять указанные задачи в соответствии с закодированными инструкциями», в отличие от файла данных, который необходимо интерпретировать (открыть) программой, чтобы получить действие или результат.
Исследование (Study) – это вся информация, собранная в одно время или для одной цели или одним главным исследователем. Исследование состоит из одного или нескольких файлов.
Исследования будущего (Futures studies) – это изучение постулирования возможных, вероятных и предпочтительных вариантов будущего, а также мировоззрений и мифов, лежащих в их основе.
Исходная отметка (Бенчмарк) ИИ (AI benchmark) – это эталонный тест ИИ для оценки возможностей, эффективности, производительности и для сравнения ИНС, моделей машинного обучения (МО), архитектур и алгоритмов при решении различных задач ИИ создаются и стандартизируется специальные эталонные тесты, исходные отметки. Например, Benchmarking Graph Neural Networks – бенчмаркинг (эталонное тестирование) графовых нейронных сетей (ГНС, GNN) – обычно включает инсталляцию конкретного бенчмарка, загрузку исходных датасетов, проведение тестирования ИНС, добавление нового датасета и повторение итераций.
Исходный код (Source code) – это любой набор кода с комментариями или без них, написанный с использованием удобочитаемого языка программирования, обычно в виде простого текста. Исходный код программы специально разработан для облегчения работы компьютерных программистов, которые определяют действия, которые должны выполняться компьютером, в основном, путем написания исходного кода. Исходный код часто преобразуется ассемблером или компилятором в двоичный машинный код, который может выполняться компьютером. Затем машинный код может быть сохранен для выполнения в более позднее время.
Исчисление высказываний (также логика высказываний и логика нулевого порядка) (Propositional calculus) – это раздел логики, который имеет дело с высказываниями (которые могут быть истинными или ложными) и потоком аргументов. Сложные предложения образуются путем соединения предложений логическими связками. Предложения без логических связок называются атомарными предложениями. В отличие от логики первого порядка, логика высказываний не имеет дело с нелогическими объектами, предикатами о них или кванторами. Однако весь механизм пропозициональной логики включен в логику первого порядка и логику высшего порядка. В этом смысле логика высказываний является основой логики первого порядка и логики высшего порядка.
Исчисление соединений регионов (Region connection calculus RCC) – это действие предназначено для качественного пространственного представления и рассуждений. RCC абстрактно описывает регионы (в евклидовом пространстве или в топологическом пространстве) их возможными отношениями друг к другу. RCC8 состоит из 8 основных отношений, которые возможны между двумя регионами.
Итерация (Iteration) – это обновление весов после анализа пакета входных записей, которое представляет собой одну итерацию обновления параметров модели нейронной сети.
26
Именованные графы [Электронный ресурс] //wikimili.com/en URL: https://wikimili.com/en/Named_graph (дата обращения: 07.07.2022)
27
Козлов А. Н. Интеллектуальные информационные системы [Текст]: учеб. / ФГБОУ ВПО Пермская ГСХА. – Пермь. 2013. – 306 с.
28
Остроух А. В. Интеллектуальные системы [Текст]: монография. / Издательство «Научно-инновационный центр». – Красноярск. 2020. – 316 с.
29
Интеллектуальная система [Электронный ресурс] //dic.academic.ru URL: https://dic.academic.ru/dic.nsf/ruwiki/176467 (дата обращения: 07.07.2022)
30
Интеллектуальный персональный помощник [Электронный ресурс] //wiki2.org URL: https://wiki2.org/en/Intelligent_personal_assistant(дата обращения: 07.07.2022)
31
Информационная интеграция [Электронный ресурс] //hmong.ru URL: https://hmong.ru/wiki/Inference_engine (дата обращения: 07.07.2022)
32
Чесалов А. Ю. Искусственный интеллект и машинное обучение для всех. -М.: Ridero. 2022.-300c.
33
Искусственный интеллект для ИТ-операций [Электронный ресурс] //networkguru.ru URL: https://networkguru.ru/aiops-artificial-intelligence-for-it-operations/ (дата обращения: 07.07.2022)