Читать книгу Глоссариум по искусственному интеллекту: 2500 терминов - Александр Николаевич Чашин, Инна Евгеньевна Скворцова, Александр Николаевич Афонин - Страница 14

Глоссариум по искусственному интеллекту
«М»

Оглавление

Маркер (Token) в языковой модели – это элементарная единица, на которой модель обучается и делает прогнозы.


Марковская модель (Markov model) — это статистическая модель, имитирующая работу процесса, похожего на марковский процесс с неизвестными параметрами, задачей которой является определение неизвестных параметров на основе наблюдаемых данных.


Марковские процессы принятия решений (MDP) (Markov decision process) – это стохастический процесс управления с дискретным временем. Он обеспечивает математическую основу для моделирования принятия решений в ситуациях, когда результаты частично случайны и частично находятся под контролем лица, принимающего решения. MDP полезны для изучения задач оптимизации, решаемых с помощью динамического программирования и обучения с подкреплением.


Марковский процесс (Markov process) – это случайный процесс, эволюция которого после любого заданного значения временного параметра t не зависит от эволюции, предшествовавшей t, при фиксированных параметрах процесса [44].


Марковское свойство (Markov property) – этот термин, относится к свойству случайного процесса без памяти. Назван в честь русского математика Андрея Маркова. [45]


Маска R-CNN (Mask R-CNN) – это свёрточная нейронная сеть (CNN), передовая технология сегментации изображений. Этот вариант глубокой нейронной сети обнаруживает объекты на изображении и создает высококачественную маску сегментации для каждого экземпляра. Используя Mask R-CNN можно автоматически сегментировать и создавать попиксельные маски для каждого объекта на изображении. Можно применять Mask R-CNN как к изображениям, так и к видеопотокам.


Маскированная языковая модель (Masked language model) – это языковая модель, которая предсказывает вероятность того, что токены-кандидаты заполнят пробелы в последовательности. Большинство современных моделей маскированного языка являются двунаправленными.


Масштабирование (Scaling) – это обычно используемая практика в разработке признаков, чтобы оптимизировать диапазон значений объекта, чтобы он соответствовал диапазону других объектов в наборе данных.


Масштабируемость (Scalability) – это способность системы, сети или процесса справляться с увеличением рабочей нагрузки (увеличивать свою производительность) при добавлении ресурсов (обычно аппаратных).


Математическая оптимизация (математическое программирование) (Mathematical optimization) – это выбор наилучшего элемента по некоторому критерию из некоторого набора доступных альтернатив. Это чрезвычайно мощная технология предписывающей аналитики, которая позволяет компаниям решать сложные бизнес-задачи и более эффективно использовать доступные ресурсы и данные


Матрица неточностей (Confusion matrix) – это таблица ситуационного анализа, в которой суммируются результаты прогнозирования модели классификации в машинном обучении. Записи в наборе данных сводятся в виде матрицы в соответствии с реальной категорией и оценкой классификации, сделанной моделью классификации.


Матрица элементов (Item matrix) — в рекомендательных системах – это матрица вложений, созданная матричной факторизацией, которая содержит скрытые сигналы о каждом элементе. Каждая строка матрицы элементов содержит значение одной скрытой функции для всех элементов. Матрица элементов имеет то же количество столбцов, что и целевая матрица, которая факторизуется. Например, если система рекомендаций по фильмам оценивает 10 000 названий фильмов, матрица элементов будет состоять из 10 000 столбцов.


Матричная факторизация (Matrix factorization) – это разложение одной матрицы на производные нескольких матриц. Существует множество различных способов факторизации матриц. Многие сложные матричные операции не могут быть решены эффективно или стабильно с использованием ограниченной точности компьютеров. Разложение матриц на составные части упрощает вычисление более сложных матричных операций.


Машина Больцмана (Boltzmann machine) – это вид стохастической рекуррентной нейронной сети, изобретенной Джеффри Хинтоном и Терри Сейновски. Машина Больцмана может рассматриваться как стохастический генеративний вариант сети Хопфилда. Эта модель оказалась первой нейронной сетью, способной обучаться внутренним репрезентациям, и может представлять и решать сложные комбинаторные задачи.


Машина опорных векторов (Support Vector Machine) – это популярная модель обучения с учителем, разработанная Владимиром Вапником и используемая как для классификации данных, так и для регрессии. Тем не менее, он обычно используется для задач классификации, построения гиперплоскости, где расстояние между двумя классами точек данных максимально. Эта гиперплоскость известна как граница решения, разделяющая классы точек данных по обе стороны от плоскости.


Машина повышения градиента (Gradient boost machine) – это тип метода машинного обучения, в котором используется ансамбль слабых моделей прогнозирования для выполнения задач регрессии и классификации.


Машина Тьюринга (Turing machine) – это математическая модель вычислений, определяющая абстрактную машину, которая манипулирует символами на полосе ленты в соответствии с таблицей правил. Несмотря на простоту модели, для любого компьютерного алгоритма можно построить машину Тьюринга, способную имитировать логику этого алгоритма.


Машинное восприятие (Machine perception) – это способность системы получать и интерпретировать данные из внешнего мира аналогично тому, как люди используют наши органы чувств. Обычно это делается с подключенным оборудованием, хотя можно использовать и программное обеспечение.


Машинное зрение (Machine Vision) – это применение общего набора методов, позволяющих компьютерам видеть, для промышленности и производства.


Машинное обучение (Machine Learning) – это область исследования, которая дает компьютерам возможность учиться без явного программирования [46,47]. Также под машинным обучением понимают технологии автоматического обучения алгоритмов искусственного интеллекта распознаванию и классификации на тестовых выборках объектов для повышения качества распознавания, обработки и анализа данных, прогнозирования [48]. Также машинное обучение определяют, как одно из направлений (подмножеств) искусственного интеллекта, благодаря которому воплощается ключевое свойство интеллектуальных компьютерных систем – самообучение на основе анализа и обработки больших разнородных данных. Чем больше объем информации и ее разнообразие, тем проще искусственному интеллекту найти закономерности и тем точнее будет получаемый результат.


Машинное обучение Microsoft Azure (платформа автоматизации искусственного интеллекта) – это функция, которая предлагает расширенную облачную аналитику, предназначенную для упрощения машинного обучения для бизнеса. Бизнес-пользователи могут моделировать по-своему, используя лучшие в своем классе алгоритмы из пакетов Xbox, Bing, R или Python или добавляя собственный код R или Python. Затем готовую модель можно за считанные минуты развернуть в виде веб-службы, которая может подключаться к любым данным в любом месте. Его также можно опубликовать для сообщества в галерее продуктов или на рынке машинного обучения. В Machine Learning Marketplace доступны интерфейсы прикладного программирования (API) и готовые сервисы. Также, – это способность машин автоматизировать процесс обучения. Входными данными этого процесса обучения являются данные, а выходными данными – модель. Благодаря машинному обучению система может выполнять функцию обучения с данными, которые она принимает, и, таким образом, она становится все лучше в указанной функции.


Машинное прослушивание (Machine listening) – это класс прикладного искусственного интеллекта, используемый для восприятия звука, понятного машинам.


Машинный интеллект (Machine intelligence) — это раздел компьютерных наук, занимающийся воспроизведением или имитацией человеческого интеллекта, самосознания, знаний, мышления в компьютерных программах. Это также обобщающий термин для различных типов алгоритмов обучения, включая машинное обучение и глубокое обучение.


Машинный перевод (Machine Translation) – это раздел компьютерной лингвистики, с использованием программного обеспечения для перевода текста или речи с одного языка на другой. [49]


Машинный разум (Machine intelligence) – это общий термин, охватывающий машинное обучение, глубокое обучение и классические алгоритмы обучения.


Машины опорных векторов или сети опорных векторов (Support-vector machines, Support-vector networks) – это контролируемые модели обучения с соответствующими алгоритмами обучения, которые анализируют данные для классификации и регрессионного анализа. Разработаны в AT&T Bell Laboratories Владимиром Вапником с коллегами в 1992 году. Машины опорных векторов являются одним из самых надежных методов прогнозирования, основанным на статистическом обучении или теории теории Вапника – Червоненкиса, предложенной Вапником (1982, 1995) и Червоненкисом (1974). Учитывая набор обучающих примеров, каждый из которых помечен как принадлежащий к одной из двух категорий, алгоритм обучения машины опорных векторов строит модель, которая относит новые примеры к той или иной категории, превращая ее в невероятностный двоичный линейный классификатор (хотя методы такие как масштабирование Платта, существуют для использования машин опорных векторов в вероятностной классификации). Машины опорных векторов сопоставляют обучающие примеры с точками в пространстве, чтобы максимизировать ширину разрыва между двумя категориями. Затем новые примеры сопоставляются с тем же пространством, и их принадлежность к категории определяется в зависимости от того, на какую сторону разрыва они попадают. В дополнение к выполнению линейной классификации SVM могут эффективно выполнять нелинейную классификацию, используя так называемый трюк ядра, неявно отображая свои входные данные в многомерные пространства признаков. Когда данные не размечены, обучение с учителем невозможно, и требуется подход к обучению без учителя, который пытается найти естественную кластеризацию данных в группы, а затем сопоставляет новые данные с этими сформированными группами. Алгоритм кластеризации опорных векторов, созданный Хавой Зигельманн и Владимиром Вапником, применяет статистику опорных векторов, разработанную в алгоритме машин опорных векторов, для категоризации неразмеченных данных.


Международный фонетический алфавит (МФА) ((PA (International Phonetic Alphabet)) – это система фонетической записи, основанная на латинском алфавите, разработанная Международной фонетической ассоциацией в качестве стандартизированного представления звуков разговорной речи.


Мероприятия по информатизации (Informatization activities) – это предусмотренные мероприятия программ цифровой трансформации государственных органов, направленные на создание, развитие, эксплуатацию или использование информационно-коммуникационных технологий, а также на вывод из эксплуатации информационных систем и компонентов информационно-телекоммуникационной инфраструктуры.


Мероприятия программы цифровой трансформации, осуществляемые государственным органом (Measures of the digital transformation program carried out by a state body) – это объединенная единой целью совокупность действий государственного органа, в том числе мероприятий по информатизации, направленных на выполнение задач по оптимизации административных процессов предоставления государственных услуг и (или) исполнения государственных функций, созданию, развитию, вводу в эксплуатацию, эксплуатации или выводу из эксплуатации информационных систем или компонентов информационно-коммуникационных технологий, нормативно-правовому обеспечению указанных процессов или иных задач, решаемых в рамках цифровой трансформации.


Метаданные (Metadata) – это термин, который относится к структурированным данным. Метаданные – это старая концепция (например, карточные каталоги и указатели), но метаданные часто необходимы для того, чтобы цифровой контент был полезным и значимым. Метаданные могут собирать общую или конкретную информацию о цифровом контенте, которая может определять административные, технические или структурные характеристики цифрового контента. «Метаданные сохранения» – это термин для более широкого набора метаданных, которые документируют жизненный цикл цифрового контента от создания до обработки, хранения, сохранения и использования с течением времени. Сохранение метаданных требуется на совокупном уровне (например, на уровне коллекции и исследования) и на уровне элемента (например, на уровне файла и переменной). Например, все действия по сохранению, применяемые к цифровому контенту с течением времени, должны фиксироваться в метаданных сохранения. Словарь данных «Стратегии внедрения метаданных сохранения» (PREMIS) – это разработка сообщества цифрового сохранения, которая движется к тому, чтобы стать стандартом. Существуют дополнительные специфичные для формата (например, словарь данных неподвижных изображений NISO) и другие стандарты, определяющие дополнительные метаданные для сохранения. ICPSR подготавливает запись метаданных для каждой коллекции данных, и мы представляем доступную для поиска базу данных записей метаданных на нашем общедоступном веб-сайте. ICPSR определил набор элементов метаданных на уровне файлов для сохранения. Инициатива ICPSR по улучшению процессов включает идентификацию метаданных на каждом этапе конвейера.


Мета-обучение (Meta-learning) – является одним из наиболее активных направлений исследований в области глубокого обучения, подмножеством машинного обучения, которое обнаруживает или улучшает алгоритм обучения. Система мета-обучения также может быть направлена на обучение модели быстрому освоению новой задачи на основе небольшого объема данных или опыта, полученного в предыдущих задачах. В контексте систем ИИ, метаобучение можно определить, как способность приобретать универсальность знаний. Путь к универсальности знаний предполагает от агентов ИИ «Учиться учиться». Основные типы метаобучающихся моделей: Мета-обучение несколько выстрелов; Оптимизатор мета-обучения; Метрическое мета-обучение; Рекуррентная модель мета-обучения [50].


Метаэвристика (Metaheuristic) – это процедура и эвристика более высокого уровня, предназначенная для поиска, генерации или эвристики, которая может обеспечить достаточно хорошее решение задачи оптимизации, особенно при неполной или несовершенной информации, или ограниченной вычислительной мощности. Метаэвристика отбирает подмножество решений, которое в другом случае слишком велико, чтобы его можно было полностью перечислить или исследовать каким-либо иным образом.


Метка или разметка (Label) – это разметка данных перед тем, как их использовать в системах машинного обучения. Эти метки могут быть в виде слов или цифр. Чтобы сделать данные понятными или в удобочитаемой форме, обучающие данные часто помечаются метками – словами.


Метод k-средних (K-means) – это наиболее популярный метод кластеризации. Был изобретён в 1950-х годах математиком Гуго Штейнгаузом и почти одновременно Стюартом Ллойдом. Кластеризация K-средних один из самых простых и популярных алгоритмов машинного обучения без учителя. Как правило, неконтролируемые алгоритмы делают выводы из наборов данных, используя только входные векторы, не обращаясь к известным или помеченным результатам.


Метод Монте-Карло (Monte Carlo Methods) – это метод многократного имитационного моделирования вероятностей, представляет собой математический метод, с помощью которого можно оценить возможные результаты неопределенного события. Метод Монте-Карло был изобретен Джоном фон Нейманом и Станиславом Уламом во время Второй мировой войны с целью улучшения процесса принятия решений в условиях неопределенности. Название методу дал известный своими казино город в Монако, поскольку в основе данного подхода к моделированию лежит принцип генерации случайных чисел, применяемый в рулетке.


Метод обратного распространения ошибки (Error backpropagation) – это метод вычисления градиента, который используется при обновлении весов многослойного перцептрона. Впервые метод был описан в 1974 г. А. И. Галушкиным. Метод включает в себя большое количество итерационных циклов с обучающими данными.


Метод ядра (Kernel method). В машинном обучении – этот метод представляет собой класс алгоритмов для анализа шаблонов, наиболее известным из которых является машина опорных векторов (SVM). Общая задача анализа шаблонов состоит в том, чтобы найти и изучить общие типы отношений (например, кластеры, ранжирование, главные компоненты, корреляции, классификации) в наборах данных.


Метод COBWEB (COBWEB) – это классический метод инкрементальной концептуальной кластеризации, который был изобретен профессором Дугласом Фишером в 1987 году. В отличие от традиционной кластеризации, которая обнаруживает группы схожих объектов на основе меры сходства между ними, концептуальная кластеризация определяет кластеры как группы объектов, относящейся к одному классу или концепту – определённому набору пар «атрибут-значение». Алгоритм COBWEB создаёт иерархическую кластеризацию в виде дерева классификации: каждый узел этого дерева ссылается на концепт и содержит вероятностное описание этого концепта.


Методология разработки и операции (DevOps development & operations) – это набор методик, инструментов и философия культуры, которые позволяют автоматизировать и интегрировать между собой процессы команд разработки ПО и ИТ-команд. Особое внимание в DevOps уделяется расширению возможностей команд, их взаимодействию и сотрудничеству, а также автоматизации технологий. Под термином DevOps также понимают особый подход к организации команд разработки. Его суть в том, что разработчики, тестировщики и администраторы работают в едином потоке – не отвечают каждые за свой этап, а вместе работают над выходом продукта и стараются автоматизировать задачи своих отделов, чтобы код переходил между этапами без задержек. В DevOps ответственность за результат распределяется между всей командой [51,52].


Методы эвристического поиска (Heuristic search techniques) – это методы, которые сужают поиск оптимальных решений проблемы за счет исключения неверных вариантов


Методы эвристического поиска (Heuristic search techniques) – это методика, которая сужает поиск оптимальных решений проблемы, исключая неверные варианты. [53]


Метрика (Metric) – это функция в задачах машинного обучения для оценки качества моделей и сравнения различных алгоритмов машинного обучения. [54]


Метрика справедливости (Fairness metric) – это математическое определение «справедливости», которое поддается измерению. Многие показатели справедливости являются взаимоисключающими.


Метрики API (Application Programming Interface или интерфейс программирования приложений) (tf. metrics) TensorFlow – это функция для оценки моделей. Например, tf.metrics.accuracy определяет, как часто прогнозы модели соответствуют меткам.


Механизм внимания (Attention mechanism) – это одно из ключевых нововведений в области нейронного машинного перевода. Внимание позволило моделям нейронного машинного перевода превзойти классические системы машинного перевода, основанные на переводе фраз. Основным узким местом в sequence-to-sequence обучении является то, что все содержимое исходной последовательности требуется сжать в вектор фиксированного размера. Механизм внимания облегчает эту задачу, так как позволяет декодеру оглядываться на скрытые состояния исходной последовательности, которые затем в виде средневзвешенного значения предоставляются в качестве дополнительных входных данных в декодер.


Механизм логического вывода (Inference engine) – это составная часть системы, которая применяет логические правила к базе знаний, чтобы вывести новую информацию. Первые механизмы вывода были компонентами экспертных систем. Типичная экспертная система состоит из базы знаний и механизма вывода. В базе знаний хранятся факты об окружающем мире. Механизм вывода применяет логические правила к базе знаний и выводит новые знания. [55]


Мехатроника (Mechatronics) – это наука, которая существует на стыке механики, электроники, машиностроения, вычислительной техники и электронного управления. Это одна из наиболее динамично развивающихся областей техники и науки. Слово «мехатроника» был введен в техническую терминологию японской компанией Yaskawa Elektric Corporation в 1969 году (компания, основанная в 1915 г.) и с 1971 г. охраняется как торговое наименование.


Микроданные (Microdata) – это файлы, которые содержат информацию об отдельных лицах, а не агрегированные данные. «Сводные файлы» Бюро переписи населения США содержат совокупные данные и состоят из общего числа лиц с различными указанными характеристиками в определенной географической области. Это, в некотором смысле, таблицы итогов. Однако файлы Бюро PUMS (выборка микроданных для общественного пользования) содержат данные из исходного инструмента обследования переписи, при этом определенная информация удалена для защиты анонимности респондента.


Минимаксные потери (Minimax loss) – это функция потерь в машинном обучении для порождающих состязательных сетей, основанная на перекрестной энтропии между распределением сгенерированных данных и реальными данными. Минимакс является алгоритмом принятия решений в области искусственного интеллекта, теории принятия решений, теориях игр, статистике и философии для минимизации возможных потерь. [56]


Минимизация структурных рисков (Structural risk minimization, SRM) – это индуктивный принцип использования в машинном обучении. Обычно в машинном обучении обобщенная модель должна быть выбрана из конечного набора данных, что приводит к проблеме переобучения – модель становится слишком строго адаптированной к особенностям обучающего набора и плохо обобщается для новых данных. Принцип SRM решает эту проблему, уравновешивая сложность модели с ее успехом в подборе обучающих данных. Этот принцип был впервые изложен в статье 1974 года Владимира Вапника и Алексея Червоненкиса.


Минимизация эмпирического риска (МЭР) (Empirical risk minimization) – это принцип статистической теории обучения, который определяет семейство обучающихся алгоритмов и который задаёт теоретические границы результативности.


Мини-пакет (Mini-batch) – это разбиение большого объема данных для обучения на пакеты, каждый из которых называется мини-пакетом, для дальнейшей пакетной обработки. Размер мини-пакета обычно составляет от 10 до 1000 единиц. Гораздо эффективнее вычислять потери по мини-пакету, чем по полным данным обучения.


Мини-пакетный градиентный спуск (Mini-batch stochastic gradient descent) – это метод оптимизации, используемый для вычисления параметров модели (коэффициентов и смещения) для таких алгоритмов, как линейная регрессия, логистическая регрессия, нейронные сети и т. д. Мини-пакетный градиентный спуск – оптимальное, сбалансированное решение между надежностью стохастического градиентного спуска и эффективностью пакетного градиентного спуска. Это наиболее распространенная реализация градиентного спуска, используемая в области глубокого обучения.


Многозадачное обучение (Multitask learning) – это общий подход, при котором модели обучаются выполнению различных задач на одних и тех же параметрах. В нейронных сетях этого можно легко добиться, связав веса разных слоев. Идея многозадачного обучения была впервые предложена Ричем Каруаной в 1993 году и применялась для прогнозирования пневмонии, а также для создания системы следования дороге на беспилотных устройствах (Каруана, 1998). Фактически при многозадачном обучении модель стимулируют к созданию внутри себя такого представления данных, которые позволяет выполнить сразу много задач. Это особенно полезно для обучения общим низкоуровневым представлениям, на базе которых потом происходит «концентрация внимания» модели или в условиях ограниченного количества обучающих данных. Многозадачное обучение нейросетей для обработки естественного языка было впервые применено в 2008 году Коллобером и Уэстоном (Collobert & Weston, 2008) [57].


Многоклассовая логистическая регрессия (также называемая полиномиальной логистической регрессией) (Multi-class logistic regression) – это алгоритм бинарной логистической регрессии (два класса) расширенной на многоклассовые случаи. В мультиклассовой логистической регрессии классификатор можно использовать для прогнозирования нескольких результатов.


Многомерная система (Multidimensional system) или м-Д система – это система, в которой существует не только одна независимая переменная (как время), а несколько независимых переменных.


Многослойная нейронная сеть (многослойный персептрон) (Multilayer neural network) – это сети, в которых нейроны сгруппированы в слои. При этом каждый нейрон предыдущего слоя связан со всеми нейронами следующего слоя, а внутри слоёв связи между нейронами отсутствуют. Слои нумеруются слева направо. Первый слой называют входным или распределительным. Его нейроны (которые также называют входными) принимают элементы вектора признаков и распределяют их по нейронам следующего слоя. При этом обработка данных во входном слое не производится. Последний слой называется выходным. На выходах его нейронов (они называются выходными) формируется результат работы сети – элементы выходного вектора. Между входным и выходным слоем располагаются один или несколько промежуточных или скрытых слоёв. Скрытыми они называются по тому, что их входы и выходы неизвестны для внешних по отношению к нейронной сети программам и пользователю. [58]


Многослойный персептрон (МЛП, Multilayer Perceptrons, MLP)) – это одна из наиболее распространенных моделей нейронных сетей, разновидность искусственной нейронной сети используемых в области глубокого обучения и состоящей как минимум из трех слоев узлов: входного слоя, скрытого слоя и выходного слоя. МЛП, которую часто называют «ванильной» нейронной сетью, проще, чем сложные современные модели.


Мобильное здравоохранение (Mobile healthcare, mHealth) – это ряд мобильных технологий, систем, сервисов и приложений, установленных на мобильных устройствах и использующихся в медицинских целях и для обеспечения здорового образа жизни человека и мотивации людей к здоровому образу жизни и формированию новой «цифровой» культуры здоровья.


Модальность (Modality) – это функционально-семантическая категория, выражающая отношение высказывания к действительности, способ существования объекта или протекания явления либо способ понимания, суждения об объекте или явлении способ организации многооконного интерфейса программы, при котором одно из окон монопольно владеет фокусом пользовательского внимания способ образования ладов (модусов) на основе общего звукоряда путём перемещения. Категория данных высокого уровня. [59]


Модель (Model) применительно к машинному обучению – это файл, обученный распознавать определенные типы шаблонов. Вы обучаете модель на наборе данных, предоставляя ей алгоритм, который она может использовать для рассуждений и извлечения уроков из этих данных. После того, как вы обучили модель, вы можете использовать ее для анализа данных, которые она раньше не видела, и делать прогнозы относительно этих данных.


Модель LaMDA (LaMDA) – это языковая модель для диалоговых приложений, новая технология Google для обработки диалоговой речи. модель LaMDA разработана Google как открытое приложение для разговорного ИИ. Она берет на себя роль человека или аватара во время разговоров с пользователями.


Модель вероятностной регрессии (Probabilistic regression model) – это модель регрессии, в которой используются не только веса для каждого признака, но и неопределенность этих весов. Модель вероятностной регрессии генерирует прогноз и неопределенность этого прогноза.


Модель классификации (Classification model) – это тип модели машинного обучения для различения двух или более дискретных классов. Например, модель классификации обработки естественного языка может определить, было ли входное предложение французским, испанским или итальянским.


Модель мешка слов (Bag-of-words model) – это упрощающее представление, используемое при обработке естественного языка и поиске информации (IR). В этой модели текст (например, предложение или документ) представляется в виде набора (мультимножества) его слов без учета грамматики и даже порядка слов, но с сохранением множественности. Модель мешка слов также использовалась для компьютерного зрения. Модель мешка слов обычно используется в методах классификации документов, где (частота) появления каждого слова используется в качестве признака для обучения классификатора.


Модель мешка слов в компьютерном зрении (Bag-of-words model in computer vision) – в компьютерном зрении эту модель (модель BoW) можно применять для классификации изображений, рассматривая признаки изображения как слова. В классификации документов набор слов представляет собой разреженный вектор количества встречаемости слов; то есть разреженная гистограмма по словарному запасу. В компьютерном зрении набор визуальных слов представляет собой вектор количества встречаемости словаря локальных признаков изображения.


Модель от последовательности к последовательности (Sequence-to-sequence model, seq2seq). Самая популярная задача на последовательность – это перевод: обычно с одного естественного языка на другой. За последние пару лет коммерческие системы стали на удивление хороши в машинном переводе – взгляните, например, на Google Translate, Yandex Translate, DeepL Translator, Bing Microsoft Translator. Сегодня мы узнаем об основной части этих систем.


Модель последовательности (Sequence model) – это модель, входы которой имеют последовательную зависимость. Например, предсказание следующего видео, просмотренного на основе последовательности ранее просмотренных видео.


Модель регрессии (Regression model) – это тип модели, которая выводит непрерывные значения (обычно с плавающей запятой).


Модель убеждений, желаний и намерений (Belief-desire-intention software model) – это модель программирования интеллектуальных агентов. Образно модель описывает убеждения, желания и намерения каждого агента, однако непосредственно применительно к конкретной задаче агентного программирования. По сути, модель предоставляет механизм позволяющий разделить процесс выбора агентом плана (из набора планов или внешнего источника генерации планов) от процесса исполнения текущего плана, выбранного ранее. Как следствие, агенты, повинующиеся данной модели способны уравновешивать время, затрачиваемое ими на выбор и отсеивание будущих планов со временем исполнения выбранных планов. Процесс непосредственного синтеза планов (планирование) в модели не описывается и остаётся на откуп программного дизайнера или программиста.


Модель Generative Pre-trained Transformer (Generative Pre-trained Transformer) – это семейство больших языковых моделей на основе Transformer, разработанных OpenAI. Варианты GPT могут применяться к нескольким модальностям, в том числе: • генерация изображений (ImageGPT) • преобразование текста в изображение (DALL-E).


Модули векторной обработки (Intelligent Engines) – это поле выполнения операций умножения с плавающей запятой с минимальными задержками (DSP Engines) и специализированное поле/модуль AI Engines c высокой пропускной способностью, а также минимальными задержкам на выполнение операций и оптимальным уровнем энергопотребления, предназначенное для решения задач в области реализации искусственного интеллекта (AI inference) и цифровой обработки сигналов.


Модус поненс (Modus ponens) – это правило логики, которое позволяет вам применять операторы «если-то» для получения части «тогда» всякий раз, когда часть «если» удовлетворяется.


Модус толленс (Modus Tollens) – это форма дедуктивного аргумента и правило логики, используемое для выводов из аргументов и наборов аргументов. Modus tollens утверждает, что если P истинно, то Q также истинно. Если P ложно, следовательно, Q также ложно.


Мозговая технология (также самообучающаяся система ноу-хау) (Brain technology) – это технология, в которой используются последние открытия в области неврологии. Термин был впервые введен Лабораторией искусственного интеллекта в Цюрихе, Швейцария, в контексте проекта ROBOY. Brain Technology может использоваться в роботах, системах управления ноу-хау и любых других приложениях с возможностями самообучения. В частности, приложения Brain Technology позволяют визуализировать базовую архитектуру обучения, которую часто называют «картами ноу-хау».


Мозгоподобные вычисления (Brain-inspired computing) – это вычисления на мозгоподобных структурах, вычисления, использующие принципы работы мозга.


Мультиагентные системы (Multi-agent system MAS) – это основная область исследований современного искусственного интеллекта. Многоагентная система состоит из нескольких агентов, принимающих решения, которые взаимодействуют в общей среде для достижения общих или противоречивых целей. С помощью методологий MAS можно решать широкий спектр приложений, включая автономное вождение, фабрики с несколькими роботами, автоматическую торговлю, коммерческие игры, автоматизированное обучение и т. д.


Мультиголовное самовнимание (Multi-head self-attention) – является ключевым компонентом Transformer- современной архитектуры для нейронного машинного перевода. Механизм самовнимания в настоящее время встречается в самых различных архитектурах и задачах (перевод, генерация текста, аннотация изображений и т.д.).


Мульти-классовая классификация (Multi-class classification) – это классификация, включающая более двух классов, например, классификация серии фотографий породы собак, которые могут быть мопсом, бульдогом или мастифом. Мультиклассовая классификация предполагает, что каждый образец относится к одному классу, например, собака может быть либо мопсом, либо бульдогом, но не тем и другим одновременно.


Мультимодальная модель (Multimodal model) – это текст и другие типы ввода (такие как графика, изображения и т. д.) и более специфичные для конкретной задачи. В мультимодальных средах модель преобразователей используется для создания прогнозов путем слияния текста и изображения. Различные входные данные объединяются, и поверх позиционных вложений добавляется встраивание сегмента, чтобы сообщить модели, какая часть входного вектора относится к тексту, а какая к изображению. Такая классификация возможна с предварительно обученной моделью [60].


Мультимодальное обучение (Multi-Modal Learning) – это подраздел машинного обучения, когда данные поступают из разных источников. Модусы – это, по сути, каналы информации. Эти данные из нескольких источников семантически коррелированы и иногда предоставляют дополнительную информацию друг другу, таким образом отражая шаблоны, которые не видны при работе с отдельными модальностями сами по себе.


Мультимодальные приложения (Multimodal application) – это объединение различных модальностей или типов информации для повышения производительности в области глубокого обучения. Чтобы искусственный интеллект смог добиться прогресса в понимании окружающего мира, он должен уметь вместе интерпретировать такие мультимодальные сигналы. Мультимодальное глубокое обучение опирается на множество модусов, каждый из которых вносит свой вклад в значение.


Мульти-опыт (Multi-experience) – это часть долгосрочного перехода от индивидуальных компьютеров, которые мы используем сегодня, к многопользовательским, мультисенсорным и многолокационным системам, процесс замены людей, понимающих технологии, на технологии, понимающие людей.


Мусор на входе – мусор на выходе (Garbage In, Garbage Out) – это принцип в информатике, означающий, что при неверных входящих данных будут получены неверные результаты, даже если сам по себе алгоритм правилен.


Мутация (Mutation) – это тип тестирования программного обеспечения, при котором определенные операторы исходного кода изменяются/мутируют, чтобы проверить, могут ли тестовые примеры найти ошибки в исходном коде. Целью мутационного тестирования является обеспечение качества тестовых примеров с точки зрения надежности, чтобы они не давали сбой мутировавшему исходному коду. Изменения, внесенные в мутантную программу, должны быть очень небольшими, чтобы они не влияли на общую цель программы. Мутационное тестирование также называется стратегией тестирования на основе ошибок, поскольку оно включает создание ошибки в программе и представляет собой тип тестирования белого ящика, который в основном используется для модульного тестирования.


Набор данных (Data set) – это совокупность данных, прошедших предварительную подготовку (обработку) в соответствии с требованиями законодательства Российской Федерации об информации, информационных технологиях и о защите информации и необходимых для разработки программного обеспечения на основе искусственного интеллекта (Национальная стратегия развития искусственного интеллекта на период до 2030 года).

44

Марковский процесс [Электронный ресурс] //en.wikipedia.org. URL: https://ru.wikipedia.org/wiki/%D0%9C%D0%B0%D1%80%D0%BA%D0%BE%D0%B2%D1%81%D0%BA%D0%B8%D0%B9_%D0%BF%D1%80%D0%BE%D1%86%D0%B5%D1%81%D1%81 (дата обращения: 07.07.2022)

45

Марковское свойство [Электронный ресурс] //wikimili.com URL: https://wikimili.com/en/Markov_property/ (дата обращения: 07.07.2022)

46

Машинное обучение [Электронный ресурс] // en.wikipedia.org. URL: https://en.wikipedia.org/wiki/Arthur_Samuel (дата обращения: 14.01.2022)

47

Машинное обучение [Электронный ресурс] // datascience.stackexchange.com. URL: https://datascience.stackexchange.com/questions/37078/source-of-arthur-samuels-definition-of-machine-learning (дата обращения: 14.01.2022)

48

Технологии искусственного интеллекта. [текст].– Москва: Агентство промышленного развития Москвы, 2019.-155 с. [Электронный ресурс] // apr.moscow. URL: https://apr.moscow/analitics/promyshlennost-moskvy (дата обращения: 02.02.2022).

49

Машинный перевод [Электронный ресурс] //towardsdatascience.com URL: https://towardsdatascience.com/machine-translation-a-short-overview-91343ff39c9f (дата обращения: 07.07.2022)

50

Мета-обучение [Электронный ресурс] www.machinelearningmastery.ru URL: https://www.machinelearningmastery.ru/learning-to-learn-a-gentle-introduction-to-meta-learning-4befb76da91a/ (дата обращения: 07.07.2022)

51

Методология разработки и операции ps [Электронный ресурс] www.atlassian.com URL: https://www.atlassian.com/ru/devops (дата обращения: 07.07.2022)

52

Методология разработки и операции [Электронный ресурс] //mcs.mail.ru URL: https://mcs.mail.ru/blog/chto-takoe-metodologiya-devops (дата обращения: 07.07.2022)

53

Методы эвристического поиска [Электронный ресурс] //intuit.ru URL: https://intuit.ru/studies/professional_skill_improvements/1574/courses/507/lecture/ (дата обращения: 07.07.2022)

54

Метрика [Электронный ресурс] www.machinelearningmastery.ru URL: https://www.machinelearningmastery.ru/20-popular-machine-learning-metrics-part-1-classification-regression-evaluation-metrics-1ca3e282a2ce/ (дата обращения: 07.07.2022)

55

Механизм логического вывода [Электронный ресурс] //ru.wikipedia.org URL: https://ru.wikipedia.org/wiki (дата обращения: 07.07.2022)

56

Минимаксные потери [Электронный ресурс] //mcs.mail.ru URL: https://dev.abcdef.wiki/wiki/Minimax (дата обращения: 07.07.2022)

57

Многозадачное обучение [Электронный ресурс] // https://ai-news.ru. URL: https://ai-news.ru/2019/07/8_glavnyh_proryvov_v_nejrosetevom_nlp.html (дата обращения: 04.08.2022)

58

Многослойная нейронная сеть [Электронный ресурс] //wiki.loginom.ru URL: https://wiki.loginom.ru/articles/multilayer-neural-net.html (дата обращения: 07.07.2022)

59

Модальность [Электронный ресурс] //vslovarike.ru URL: https://vslovarike.ru/ (дата обращения: 07.07.2022)

60

Мультимодальная модель [Электронный ресурс] www.projectpro.io URL: https://www.projectpro.io/recipes/what-are-multimodal-models-transformers (дата обращения: 07.07.2022)

Глоссариум по искусственному интеллекту: 2500 терминов

Подняться наверх