Читать книгу Парадоксы эволюции. Как наличие ресурсов и отсутствие внешних угроз приводит к самоуничтожению вида и что мы можем с этим сделать - Алексей Макарушин - Страница 13
Глава II. Минеральные ячейки в нуклеиновой обкладке: в начале была энергия
Если к горячим источникам добавить цикличность
ОглавлениеВ последние годы исследовательская группа Тары Джокич, Дэвида Димера и Мартина ван Кранендонка (Tara Jokic, David Deamer and Martin van Kranendonk, 2017) активно разрабатывает альтернативную теорию наиболее вероятного места и механизма происхождения жизни. Они располагают это сакральное место в окрестностях систем древних наземных вулканических водоемов, похожих на современные гейзерные поля Йеллоустоуна или Камчатки, но обладавших цикличностью высыхания-гелеобразования-увлажнения. Подобная цикличность позволяет образовываться многослойным протоорганическим формированиям, предшественникам органических полупроницаемых мембран – первоначально, в сухую фазу, плоским, и изредка во влажную фазу, со сферическими отпочкованиями. Однако энергетический баланс протоклеточных структур в этом случае с трудом покрывается простыми неорганическими источниками энергии, например полифосфатами. Принципиально эта теория не отвергает роль щелочных гидротермальных источников: на примере Боржоми мы видим, что такие источники вполне могут быть наземными; более того, в историческом плане они могут быть наземно-приморскими: та же местность Боржоми еще в позднем миоцене, возможно, представляла собой прибрежную зону деградирующего океана Тетис с разворачивающейся вулканической деятельностью. Вероятность подобных сочетаний в эоархее, предполагаемой эпохе возникновения настоящих жизненных форм, в общем-то тоже не исключена. В подобных случаях цикличность может включать два типа влажных фаз (или серий фаз): щелочную гидротермальную и кислую морскую (приливную?). В любом случае крайне маловероятно, что даже в «чистой» теории щелочных гидротермальных источников линия разграничения щелочного и кислого потоков будет стабильна; более вероятно, что в части микроячеистой породы с большей проницаемостью попеременно меняется рН среды, а в части микроячеек с меньшей проницаемостью рН более стабильно, но меняется их окружение. Возможная «сухая» фаза способствует дополнительной концентрации органических молекул на первичных минеральных мембранах, дополнительно к феноменам термофорезаи компартментализации (то есть концентрирования в пограничных сегментах за счет тепловых градиентов и тепловых конвекционных потоков во множестве полупроницаемых разграничений). В принципе, как показано исследовательской группой под руководством Джулиана Тэннера и Андерсона Шума из Университета Гонконга на примере термодинамики «высыхающих капель», компартментализации в протобиологических структурах может способствовать даже процесс частичного испарения в двухфазовых водных системах (Guo W. et al., 2021).
В последующем неорганическая основа может почти полностью «вымываться» или механически, или кислотным воздействием, подобно вытравливанию кислотой элементной платы, оставляя функциональные каталитические фрагменты – те же железосерные кластеры. С другой стороны, «чистая» теория щелочных гидротермальных источников «выталкивает» наиболее вероятных прародителей биологической изменчивости и наследственности – это неустойчивые в щелочной среде полимеры рибонуклеиновой кислоты (РНК) – на кислую сторону первичных полупроницаемых мембран, где этой теорией не предполагается (хотя и не исключается) ячеистая неорганическая мембранная структура (компартментализация). В комбинированном циклическом варианте с двумя – кислой и щелочной – влажными фазами фрагменты РНК могут быть заключены в ячейку с кислой средой внутри, находящуюся в щелочном окружении. Более того, подобным образом могут организовываться вторичные и третичные матрешкообразные ячеистые формирования, где мелкие кислые пузырьки в окружении более крупных щелочных конгломератов, оказывающиеся внутри крупных кислых кластеров, частично окруженных щелочной средой и так далее (рис. 2–6).
Рис. 2. Микропористые ячейки, проводящие щелочную воду гидротермального источника, частично заполнены также подкисленной соленой морской водой
Рис. 3. Сухая фаза: минеральные и органические осадки из щелочной воды источников и соленой морской воды оставили отложения на стенках микроячеек (отмечены черным и серым цветом соответственно)
Рис. 4. Повторное заполнение во влажную фазу: граница раздела фаз проходит по новой линии, в результате чего часть ячеек с щелочными отложениями на стенках заполняется кислой средой и наоборот
Рис. 5. После нескольких циклов смены сухих и влажных фаз часть ячеек оказывается заполненными разнородными слоями, с возможным формированием биоэлектрического «вольтового столба» – аккумулятора энергии, а сами ячейки окружены ячейками с содержимым существенно иного рН
Рис. 6. Мембраны «научились» энергетически самоподдерживаться и самовосстанавливаться, возможно, с помощью структурных нуклеиновых кислот и рибозимов. Минеральная составляющая полупроницаемых мембран может впоследствии «вымываться», оставляя ассоциированные с новыми органическими оболочками каталитические железосерные кластеры
На близком принципе – чередования соленых и пресных фаз в изолированных элементах – уже построен ряд экспериментальных энергетических установок. С их помощью предполагается использовать «энтропийную» энергию градиента солености Мирового океана, оцениваемую до 1700 ТВт*ч/год (Skilhagen S.E., 2011), так называемую «голубую энергию» океана. Интересными прототипами можно назвать емкостную технологию итальянского инженера-физика Дориано Броджиоли (Doriano Borgioli, 2009) на основе двуслойного электролитического конденсатора (ионистора) большой емкости, работающего по сложному циклу заряда/разряда и поочередного наполнения камеры конденсатора соленой и пресной водой, и более продвинутую технологию группы исследователей из Стэнфордского университета (Ye M. et al., 2019), использующую «батареи энтропийного смешивания» (БЭС; Mixing Entropy Batteries, MEB). БЭС включает два электрода с большой поверхностью контакта, между которыми происходит чередование фаз морской и пресной воды. Один электрод состоит из берлинской лазури, смеси нескольких гексацианоферратов (II), весьма простых соединений железа, азота и углерода, другой представляет собой проводящий органический полимер, полипиррол. В циклическом процессе при заполнении камеры батареи пресной водой ионы натрия и хлориды выходят из соответствующих электродов в воду, создавая электрический ток между электродами. При смене пресной воды на морскую ионы натрия и хлориды забираются обратно в электроды, также образуя электрический ток, но уже обратной направленности.
Технически протонный градиент между средами с разным рН может быть заменен на натриевый и/или калиевый градиенты, имеющие бОльшую буферную емкость из-за большего содержания калия и натрия в рассматриваемых водах, нежели свободные протоны. На идее первичного калиевого градиента, наследуемого почти всеми формами жизни – преобладания калия внутри, а натрия снаружи клетки – основывается модель Армена Мулкиджаняна, Дарьи Дибровой, Михаила Гальперина и Евгения Кунина (Mulkijanian A. et al., 2012; Диброва Д. и соавт., 2015). В этой модели за основу для формирования протобиологических структур принимается конденсат испарений наземных геотермальных полей, в котором, как и в клеточных цитоплазмах, преобладает калий. Сам пресный конденсат неизбежно должен был находиться в щелочном окружении богатых натрием горячих геотермальных вод. При наличии адекватного полупроницаемого разделения на этой основе могла возникнуть первичная фосфатная, а затем самоподдерживающаяся натрий-калиевая мембранная энергетика. Как показывают недавние биоинформационные исследования группы Мулкиджаняна (Козлова М. И. и соавт., 2020), эта древнейшая натриевая энергетика («натриевый мир») не заместилась полностью более «современной» протонной энергетикой, а оказалась органично встроенной в конфигурацию биоэнергетических и биоинформационных процессов большинства современных эукариот, архей и бактерий. Даже у высших животных, включая человека, ключевые белки межклеточных коммуникаций – ассоциированные с G-белком рецепторы (GPCR, G-protein coupled receptors), одна из самых широко представленных в организме групп белков, – имеют прямое происхождение от древнейших белковых энергетических структур «натриевого мира».