Читать книгу Electronics in Advanced Research Industries - Alessandro Massaro - Страница 33

References

Оглавление

1 1 Vaidya, S., Prashant, A., and Bhosle, S. (2018). Industry 4.0 – a glimpse. Procedia Manufacturing 20 (1): 233–238.

2 2 Moon, S.H. (2018). Industry 4.0 for advanced manufacturing and its implementation. Eurasian Journal of Analytical Chemistry 13 (6): 491–497.

3 3 Ruppert, T., Jaskó, S., Holczinger, T., and Abonyi, J. (2018). Enabling technologies for operator 4.0: a survey. Applied Sciences 8 (1650): 1–19.

4 4 Lampropoulos, G., Siekas, K., and Anastasiadis, T. (2019). Internet of Things in the context of industry 4.0: an overview. International Journal of Entrepreneurial Knowledge 7 (1): 4–19.

5 5 Novak‐Marcincin, J., Barna, J., Janak, M., and Novakova‐Marcincinova, L. (2013). Augmented reality aided manufacturing. Procedia Computer Science 25 (1): 23–31.

6 6 Segovia, D., Mendoza, M., Mendoza, E., and González, E. (2015). Augmented reality as a tool for production and quality monitoring. Procedia Computer Science 75 (1): 291–300.

7 7 Bottani, E. and Vignali, G. (2019). Augmented reality technology in the manufacturing industry: a review of the last decade. IISE Transactions 51 (3): 284–310.

8 8 Cioffi, R., Travaglioni, M., Piscitelli, G. et al. (2020). Artificial intelligence and machine learning applications in smart production: progress, trends, and directions. Sustainability 12 (492): 1–26.

9 9 Lee, W.J., Wu, H., Yun, H. et al. (2019). Predictive maintenance of machine tool systems using artificial intelligence techniques applied to machine condition data. Procedia CIRP 80 (1): 506–511.

10 10 Pandarakone, S.E., Mizuno, Y., and Nakamura, H. (2019). A comparative study between machine learning algorithm and artificial intelligence neural network in detecting minor bearing fault of induction motors. Energies 12 (2105): 1–14.

11 11 Pérez, L., Rodríguez, Í., Rodríguez, N. et al. (2016). Robot guidance using machine vision techniques in industrial environments: a comparative review. Sensors 16 (335): 1–26.

12 12 Massaro, A. and Galiano, A. (2020). Image processing and post‐data mining processing for security in industrial applications: security in industry. In: Handbook of Research on Intelligent Data Processing and Information Security Systems (eds. S.M. Bilan and S.I. Al‐Zoubi), 117–146. Hershey, PA: IGI Global.

13 13 Massaro, A. and Galiano, A. (2020). Infrared thermography for intelligent robotic systems in research industry inspections: thermography in industry processes. In: Handbook of Research on Advanced Mechatronic Systems and Intelligent Robotics (ed. M.K. Habib), 98–125. Hershey, PA: IGI Global.

14 14 Tan, C.L. and Mohseni, H. (2018). Emerging technologies for high performance infrared detectors. Nanophotonics 7 (1): 167–197.

15 15 Kaufmann, R., Isella, G., Sanchez‐Amores, A. et al. (2011). Near infrared image sensor with integrated germanium photodiodes. Journal of Applied Physics 110 (2): 1–6.

16 16 Kumar, V., Hallqvist, C., and Ekwall, D. (2017). Developing a framework for traceability implementation in the textile supply chain. Systems 5 (33): 1–21.

17 17 Tzoulis, I. and Andreopoulou, Z. (2013). Emerging traceability technologies as a tool for quality wood trade. Procedia Technology 8 (1): 606–611.

18 18 Agrawal, T.K., Koehl, L., and Campagne, C. (2018). A secured tag for implementation of traceability in textile and clothing supply chain. The International Journal of Advanced Manufacturing Technology 99 (1): 2563–2577.

19 19 Chen, R.‐S., Chen, C.‐C., Yeh, K.C. et al. (2008). Using RFID technology in food produce traceability. WSEAS Transactions on Information Science and Applications 5 (11): 1551–1560.

20 20 Kelepouris, T., Pramatari, K., and Doukidis, G. (2007). RFID‐enabled traceability in the food supply chain. 107 (2): 183–200.

21 21 Sethi, P., Sarangi, S., and R. (2017). Internet of Things: architectures, protocols, and applications. Journal of Electrical and Computer Engineering 2017 (9324035): 1–25.

22 22 Ke, C.K., Wu, M.Y., Chan, Y.W., and Lu, K.C. (2018). Developing a BLE Beacon‐based location system using location fingerprint positioning for smart home power management. Energies 11 (3464): 1–18.

23 23 Lin, Y.‐W. and Lin, C.‐Y. (2018). An interactive real‐time locating system based on Bluetooth low‐energy beacon network. Sensors 18 (1637): 1–17.

24 24 Triantafyllou, A., Sarigiannidis, P., and Lagkas, T.D. (2018). Network protocols, schemes, and mechanisms for Internet of Things (IoT): features, open challenges, and trends. Wireless Communications and Mobile Computing https://doi.org/10.1155/2018/5349894.

25 25 Cilfone, A., Davoli, L., Belli, L., and Ferrari, G. (2019). Wireless mesh networking: an IoT‐oriented perspective survey on relevant technologies. Future Internet 11 (99): 1–35.

26 26 Froiz‐Míguez, I., Fernández‐Caramés, T.M., Fraga‐Lamas, P., and Castedo, L. (2018). Design, implementation and practical evaluation of an IoT home automation system for fog computing applications based on MQTT and ZigBee‐WiFi sensor nodes. Sensors 18 (2660): 1–42.

27 27 Amelia, A., Julham, Sundawa, B.V. et al. (2017). Implementation of the RS232 communication trainer using computers and the ATMEGA microcontroller for interface engineering courses. Journal of Physics: Conference Series 890 (012095): 1–6.

28 28 Dey, M. (2012). Comparision of data transfer protocols over USB. International Journal of Engineering Research & Technology 1 (9): 1–6.

29 29 Riberio, F.M., Costa, T.S., Baratella, A. et al. (2014). Comparative analysis of industrial network profinet, ethernet/IP, and HSE. International Journal of Innovative Computing, Information and Control 10 (5): 1931–1945.

30 30 Jaloudi, S. (2019). Communication protocols of an industrial Internet of Things environment: a comparative study. Future Internet 11 (66): 1–18.

31 31 Savaglio, C., Ganzha, M., Paprzycki, M. et al. (2019). Agent‐based Internet of Things: state‐of‐the‐art and research challenges. Future Generation Computer Systems 102 (1): 1038–1053.

32 32 Massaro, A., Calicchio, A., Maritati, V. et al. (2018). A case study of innovation of an information communication system and upgrade of the knowledge base in industry by ESB, artificial intelligence, and big data system integration. International Journal of Artificial Intelligence and Applications (IJAIA) 9 (5): 27–43.

33 33 Burhan, M., Asif Rehman, R., Khan, B., and Kim, B.‐S. (2018). IoT elements, layered architectures and security issues: a comprehensive survey. Sensors 18 (2796): 1–37.

34 34 Arsan, T., Günay, F., and Kaya, E. (2014). Implementation of application for huge data file transfer. International Journal of Wireless & Mobile Networks (IJWMN) 6 (4): 27–46.

35 35 Riabov, V.V. and SMTP (Simple Mail Transfer Protocol) (2007). The Handbook of Computer Networks, Volume 2, LANs, MANs, WANs, the Internet, and Global, Cellular, and Wireless Networks (ed. H. Bidgoli), 388–406. Hoboken, NJ: Wiley.

36 36 Nguyen, T.S. and Huynh, T.‐H. (eds.) (2015). Design and implementation of Modbus slave based on ARM Platform and FreeRTOS environment. Proceedings of International Conference on Advanced Technologies for Communications (ATC), Ho Chi Minh City, Vietnam (14–16 October 2015). Piscataway, NJ: IEEE.

37 37 Rajinder, S. and Satish, K. (2016). An overview of world wide web protocol (Hypertext Transfer Protocol and Hypertext Transfer Protocol Secure). International Journal of Advanced Research in Computer Science and Software Engineering 6 (5): 396–399.

38 38 Ansari, D.B., Rehman, A.U., and Mughal, R.A. (2018). Internet of Things (IoT) protocols: a brief exploration of MQTT and CoAP. International Journal of Computer Applications 179 (27): 9–14.

39 39 Tukade, T.M. and Banakar, R.M. (2018). Data transfer protocols in IoT – an overview. International Journal of Pure and Applied Mathematics 118 (16): 121–138.

40 40 Kastner, W., Neugschwandtner, G., and Kogler, M. (eds.) (2006). An open approach to Eib/Knx software development. Proceedings of 6th IFAC International Conference, Puebla, Mexico (14–25 November 2005). Elsevier Ltd.

41 41 Massaro, A., Manfredonia, I., Galiano, A., and Contuzzi, N. (eds.) (2019). Inline image vision Technique for tires industry 4.0: quality and defect monitoring in tires assembly. Proceedings of 2019 IEEE International Workshop on Metrology for Industry 4.0 and IoT, Naples, Italy (4–6 June 2019). Piscataway, NJ: IEEE.

42 42 Sathya, R. and Abraham, A. (2013). Comparison of supervised and unsupervised learning algorithms for pattern classification. International Journal of Advanced Research in Artificial Intelligence 2 (2): 34–38.

43 43 Massaro, A., Manfredonia, I., Galiano, A. et al. (2019). Sensing and quality monitoring facilities designed for pasta industry including traceability, image vision and predictive maintenance. Proceeding of 2019 IEEE International Workshop on Metrology for Industry 4.0 and IoT, Naples, Italy (4–6 June 2019). Piscataway, NJ: IEEE.

44 44 Massaro, A., Manfredonia, I., Galiano, A., and Xhaysa, B. (2019). Advanced process defect monitoring model and prediction improvement by artificial neural network in kitchen manufacturing industry: a case of study. Proceeding of IEEE International Workshop on Metrology for Industry 4.0 and IoT, Naples, Italy (4–6 June 2019). Piscataway, NJ: IEEE.

45 45 Massaro, A., Vitti, V., and Galiano, A. (2018). Automatic image processing engine oriented on quality control of electronic boards. Signal & Image Processing: An International Journal (SIPIJ) 9 (2): 1–14.

46 46 Kiran, B.R., Thomas, D.M., and Parakkal, R. (2018). An overview of deep learning based methods for unsupervised and semi‐supervised anomaly detection in videos. Journal of Imaging 4 (36): 1–25.

47 47 Xu, X., Zheng, H., Guo, Z. et al. (2019). SDD‐CNN: small data‐driven convolution neural networks for subtle roller defect inspection. Applied Sciences 9 (1364): 1–16.

48 48 Perez, H., Tah, J.H.M., and Mosavi, A. (2019). Deep learning for detecting building defects using convolutional neural networks. Sensors 19 (3556): 1–22.

49 49 Lin, C.‐S., Huang, Y.‐C., Chen, S.‐H. et al. (2018). The application of deep learning and image processing technology in laser positioning. Applied Sciences 8 (1542): 1–13.

50 50 Iskra, P. and Hernàndez, R.E. (2012). Toward a process monitoring of CNC wood router. Sensor selection and surface roughness prediction. Wood Science and Technology 46 (1): 115–128.

51 51 Iskra, P. and Hernàndez, R.E. (2009). The influence of cutting parameters on the surface quality of routed paper birch and surface roughness prediction modeling. Wood and Fiber Science 41 (1): 28–37.

52 52 Contuzzi, N., Massaro, A., Manfredonia, I. et al. (2019). A decision making process model based on a multilevel control platform suitable for Industry 4.0. Proceeding of 2019 IEEE International Workshop on Metrology for Industry 4.0 and IoT, Naples, Italy (4–6 June 2019). Piscataway, NJ: IEEE.

53 53 De Smedt, J., Hasić, F., Vanden Broucke, S.K.L.M., and Vanthienen, J. (2017). Towards a holistic discovery of decisions in process‐aware information systems. Proceedings of the International Conference on Business Process Management, Barcelona, Spain (10–15 September 2017). Cham: Springer Nature.

54 54 Tirgul, C.S. and Naik, M.R. (2016). Artificial intelligence and robotics. International Journal of Advanced Research in Computer Engineering & Technology (IJARCET) 5 (6): 1787–1793.

55 55 Kaura, H., Honrao, V.K., Patil, S., and Shetty, P. (2013). Gesture controlled robot using image processing. International Journal of Advanced Research in Artificial Intelligence 2 (5): 69–77.

56 56 Moulianitis, V.C. and Aspragathos, N.A. (2015). IT and mechatronics in industrial robotic workcell design and operation. In: Encyclopedia of Information Science and Technology, 3e (ed. M. Khosrow‐Pour), 440–455. Hershey, PA: IGI Global.

57 57 Birglen, L. (2019). Design of a partially‐coupled self‐adaptive robotic finger optimized for collaborative robots. Autonomous Robots 43 (2): 523–538.

58 58 Jamshidi, P., Cámara, J., Schmerl, B. et al. (2019). Machine learning meets quantitative planning: enabling self‐adaptation in autonomous robots. Proceedings of the 14th International Symposium on Software Engineering for Adaptive and Self‐Managing Systems, Montreal, Canada (25–26 May 2019). Piscataway, NJ: IEEE.

59 59 Khalid, A., Kirisci, P., Ghrairi, Z. et al. (2016). A methodology to develop collaborative robotic cyber physical systems for production environments. Logistics Research 9 (23): 1–15.

60 60 Alcácer, V. and Cruz‐Machado, V. (2019). Scanning the Industry 4.0: a literature review on technologies for manufacturing systems. Engineering Science and Technology, an International Journal 22 (1): 899–919.

61 61 Vidal, F., Álvarez, M., González, R. et al. (2011). Development of a flexible and adaptive robotic cell for small batch manufacturing. Contemporary Materials 2 (1): 1–12.

62 62 Wang, S., Wan, J., Li, D., and Zhang, C. (2016). Implementing smart factory of industry 4.0: an outlook. International Journal of Distributed Sensor Networks 12 (1): 1–10.

63 63 Mehrpouya, M., Dehghanghadikolaei, A., Fotovvati, B. et al. (2019). The potential of additive manufacturing in the smart factory industrial 4.0: a review. Applied Sciences 9 (3865): 1–34.

64 64 Shahzad, A. and Mebarki, N. (2016). Learning dispatching rules for scheduling: a synergistic view comprising decision trees, tabu search and simulation. Computers 5 (3): 1–16.

65 65 Zhang, X., Xiao, L., and Kan, J. (2015). Degradation prediction model based on a neural network with dynamic windows. Sensors 15 (3): 6996–7015.

66 66 Pynam, V., Spanadna, R.R., and Srikanth, K. (2018). An extensive study of data analysis tools (Rapid Miner, Weka, R Tool, Knime, Orange). International Journal of Computer Science and Engineering 5 (9): 4–11.

67 67 Massaro, A., Maritati, V., Savino, N. et al. (2018). A study of a health resources management platform integrating neural networks and DSS telemedicine for homecare assistance. Information 9 (176): 1–20.

68 68 Nwankpa, C.E., Ijomah, W., Gachagan, A., and Marshall, S. (2018). Activation functions: comparison of trends in practice and research for deep learning. arXiv:1811.03378v1.

69 69 Agostinelli, F., Hoffman, M., Sadowski, P., and Baldi, P. (2015). Learning activation functions to improve deep neural networks. arXiv:1412.6830v3.

70 70 Wan, Y., Li, Y., Song, Y., and Rong, X. (2020). The influence of the activation function in a convolution neural network model of facial expression recognition. Applied Sciences 10 (5): 1–20.

71 71 Harmon, M. and Klabjan, D. (2017). Activation ensembles for deep neural networks. arXiv:1702.07790v1.

72 72 Guarnieri, S., Piazza, F., and Uncini, A. (1999). Multilayer feedforward networks with adaptive spline activation function. IEEE Transactions on Neural Networks 10 (3): 672–683.

73 73 Biau, G. (2012). Analysis of a random forests model. Journal of Machine Learning Research 13: 1063–1095.

74 74 Massaro, A., Maritati, V., Giannone, D. et al. (2019). LSTM DSS automatism and dataset optimization for diabetes prediction. Applied Sciences 9 (17): 1–22.

75 75 Massaro, A., Meuli, G., and Galiano, A. (2018). Intelligent electrical multi outlets controlled and activated by a data mining engine oriented to building electrical management. International Journal on Soft Computing, Artificial Intelligence and Applications (IJSCAI) 7 (4): 1–20.

76 76 Massaro, A., Lisco, P., Lombardi, A. et al. (2019). A case study of research improvements in a service industry upgrading the knowledge base of the information system and the process management: data flow automation, association rules and data mining. International Journal of Artificial Intelligence and Applications (IJAIA) 10 (1): 25–46.

77 77 Massaro, A., Vitti, V., Lisco, P. et al. (2019). A business intelligence platform implemented in a big data system embedding data mining: a case of study. International Journal of Data Mining & Knowledge Management Process (IJDKP) 9 (1): 1–20.

78 78 Massaro, A., Leogrande, A., Lisco, P. et al. (2019). Innovative BI approaches and methodologies implementing a multilevel analytics platform based on data mining and analytical models: a case of study in roadside assistance services. International Journal on Soft Computing, Artificial Intelligence and Applications (IJSCAI) 8 (1): 17–36.

Electronics in Advanced Research Industries

Подняться наверх