Читать книгу Endure - Алекс Хатчинсон, Alex Hutchinson - Страница 11
CHAPTER 3 The Central Governor
ОглавлениеTo catch the ferry, Diane Van Deren needed to cover 36 miles in just over 8 hours. That would normally be no problem for the veteran ultra-runner—except, in this case, for the unforgiving terrain, the torrential rain and sumo-force winds left in the wake of Tropical Storm Beryl, and the fatigue and horrendous blisters accrued over the first 19 days and 900 miles of the Mountains-to-Sea Trail across North Carolina. Worse, Van Deren was startled to hear a “savage and malicious” roar from the darkness to her right. “What is that?” she yelled to her trail guide, Chuck Millsaps, the owner of a local outfitting company. It was just an airplane, he assured her—but to be safe, they strapped themselves together for mutual safety as they prepared to cross a wind-whipped bridge.
At stake in all the chaos was Van Deren’s attempt to set a new record for the 1,000-mile trail: if they missed the 1 P.M. ferry from Cedar Island to Ocracoke, the mark of 24 days, 3 hours, and 50 minutes would be out of reach. The fifty-two-year-old Coloradan was a connoisseur of the slow-drip torture of ultra-endurance challenges. She had pulled a 45-pound sled 430 miles across the frozen tundra to win the Yukon Arctic Ultra (second place was—well, no other woman finished); scaled the 22,838-foot peak of Aconcagua as part of a Mayo Clinic research expedition studying human limits; and racked up top finishes at grueling races of 100 miles or more around the world. Making the ferry, though, would require squeezing a relative sprint from her battered legs. She had been running from dawn to near-dawn for almost three weeks, sleeping one to three hours a night, barely pausing to let her North Face–supported crew team duct-tape her blistered feet and cram food into her mouth.
Fortunately, Van Deren had an advantage—or at least, a unique quirk that seemed to help her push past the corporeal limits that drag down most would-be ultramarathoners. At thirty-seven, she had undergone elective brain surgery to remove a golf-ball-sized chunk of her temporal cortex, the focal point of epileptic seizures that had plagued her, as often as two or three times a week, for years. The surgery successfully stopped the seizures but also left her with neurological deficits: poor memory, an impaired sense of direction, difficulty keeping track of time. A 2011 Runner’s World profile dubbed her “The Disoriented Express,” noting that “in races she must cover hundreds of miles, and yet often has no idea how long she has been running.” A significant handicap, you’d think—and yet it was only after the surgery that her racing career even started. To understand her extraordinary endurance, in other words, start with her brain.
The brain’s role in endurance is, perhaps, the single most controversial topic in sports science. It’s not that anyone thinks the brain doesn’t matter. Everyone, right back to A. V. Hill and other pioneers of the “body as machine” view, has always understood that the race is not always to the swift—particularly if the swift make bad tactical decisions, pace themselves poorly, or simply are unwilling to suffer. In that view, the body sets the limits, and the brain dictates how close you get to those boundaries. But starting in the late 1990s, a South African physician and scientist named Tim Noakes began to argue that this picture is insufficiently radical—that it’s actually the brain alone that sets and enforces the seemingly physical limits we encounter during prolonged exercise. The claim has profound and surprising implications, and the extent to which it’s true or false remains one of the most volatile flashpoints in exercise physiology, two decades later.
The particular tone of the controversy has as much to do with Noakes himself—an instinctive iconoclast who has been clashing with his scientific peers more or less continuously for four decades now—as with his ideas. “Tim is probably his own worst enemy,” says Carl Foster, the director of the University of Wisconsin–La Crosse’s Human Performance Laboratory and a former president of the American College of Sports Medicine, who counts Noakes as a friend. “He’s a very strong personality, and he gets these really neat, innovative ideas, but instead of saying, ‘Wow, I’ve found a better way to explain this,’ he says, ‘Everybody else is wrong.’” (Noakes, for his part, denies ever saying that everyone else is wrong. “Of course I believe they are wrong, but I am not about to tell them that,” he helpfully clarified in an email. “I just present what I believe is the truth.”) Either way, Foster acknowledges, if you want to challenge a century’s worth of textbook material, “maybe that stirring the pot is necessary.”
Noakes started out as a collegiate rower at the University of Cape Town, but his trajectory was altered one morning in the early 1970s when his rowing practice was canceled due to high winds. His teammates went home, but Noakes decided to stay and run around a nearby lake. After forty minutes, he was overcome by a feeling of euphoria—the classic but elusive runner’s high. Thanks in part to this quirk of brain chemistry, he quickly became hooked on the new sport, and ultimately shifted his professional interests from clinical medicine to running-related research. He went on to complete more than seventy marathon and ultra-marathon races, including seven finishes at South Africa’s famous 56-mile Comrades Marathon.
In the lab, meanwhile, his penchant for “paradigm-rattling,” as Foster calls it, emerged early. At a landmark gathering of sports scientists before the 1976 New York Marathon, at the height of the first jogging boom, most of the presentations focused on the incredible health benefits of running. Noakes, in contrast, presented the case report of an experienced marathoner who’d suffered a heart attack, puncturing the then-popular notion that marathoners were immune to clogged arteries. In 1981, he reported the case of Eleanor Sadler, a forty-six-year-old woman who collapsed during the Comrades Marathon, and diagnosed her problem as hyponatremia, a result of drinking too much, rather than the more common problem of drinking too little. It took another two decades—and a handful of deaths—before the scientific community fully acknowledged the dangers of overdrinking during exercise.
That same year, Noakes cofounded a dedicated sports science unit in the basement of the University of Cape Town’s physiology department, with a single stationary bicycle and a nearly obsolete treadmill. He and his colleagues began bringing athletes in and testing their maximal oxygen consumption—“because,” he says, “in 1981, to be a sports scientist, you had to have a VO2max machine, to measure VO2max.” But it didn’t take long for Noakes to grow dissatisfied with the insights provided by A. V. Hill’s signature measurement. One day in the lab’s early years, he tested track star Ricky Robinson and Comrades champion Isavel Roche-Kelly, less than an hour apart—and despite their vastly different racing speeds, they both recorded the same VO2max. Noakes’s conclusion: “Clearly the VO2max was totally useless, because here we had a sub-four-minute miler and it couldn’t say he was any better than the lady who could run a five-minute mile.”
Over the next decade, Noakes began searching for better ways of predicting and measuring endurance, and other ways of explaining the apparent limits runners like Robinson and Roche-Kelly encountered when they finally had to step off the treadmill at the end of a test to exhaustion. Hill and his successors had focused on oxygen: at your limits, your heart was incapable of pumping any more oxygen to your muscles, or your muscles were incapable of extracting any more oxygen from your bloodstream. Noakes’s first idea for an alternative to VO2max, in the late 1980s, was that the limits might reside in the contractility of the muscle fibers themselves, but that theory fizzled.
By the 1990s, Noakes had become an internationally renowned running guru, thanks to the enduring pop-sci classic Lore of Running, a 944-page doorstopper that first appeared in 1985. In 1996, he received one of the highest honors in the field of exercise physiology: an invitation to deliver the J. B. Wolffe Memorial Lecture at the annual meeting of the American College of Sports Medicine. True to his reputation, he decided to harangue his eminent audience about their stubborn adherence to the “ugly and creaking edifices” of old theories that were unsupported by “empirical science.” It was in preparing for this talk that he had his crucial epiphany about the rarity of deaths from exhaustion, like Henry Worsley’s. Whatever our limits are, something must prevent us from exceeding them by too much. And that something, he reasoned, must be the brain.
The history of brain research is, in some ways, a tale of unfortunate injuries and illnesses. Phineas Gage, for example, was a twenty-five-year-old construction foreman working on a new railway route in 1848 when a misfired explosive blast sent a 43-inch-long tamping iron rocketing up through his cheek and out the top of his skull. His survival was remarkable enough, but even more surprising were the alterations in his personality. A polite, competent man was suddenly transformed, through damage to his frontal lobes, to a profane and unreliable one: to his friends, the doctor who treated him reported, Gage was “no longer Gage.” Since then, we’ve learned a great deal about how the brain works by observing the distinctive changes that follow damage to different parts of the brain—an assortment of strange and mostly sad transformations of the type chronicled with tenderness and humanity by the late neurologist Oliver Sacks.
For Diane Van Deren, the first warning signs came when she was just sixteen months old, when a prolonged seizure sent her to the hospital where she lay, packed in ice, convulsing for nearly an hour. There were no apparent aftereffects, and Van Deren grew up to be a star tennis player, got married, and had children. Then, when she was twenty-nine and pregnant with her third child, the seizures returned, and over the next few years they got progressively worse. Working with neurologists at the University of Colorado, she eventually decided to have a partial right temporal lobectomy, to remove the portion of the brain where the seizures were originating. The surgery went well, and the seizures stopped—but not without a cost.
Even before the surgery, Van Deren had found running therapeutic. When she felt an “aura”—the odd out-of-body sensation that, for her, signaled an impending seizure—she was often able to ward off the seizure by heading out the door and running, sometimes for hours. After the surgery, she kept running, and began venturing farther and farther into the trails near her home south of Denver. Soon she was covering distances that would have daunted even the fittest runners, and in 2002 she entered her first ultramarathon, a 50-mile trail run with only one other entrant. The 50-miler turned out to be just a stepping-stone to 100-milers, which in turn led to multi-day races like the Yukon Arctic Ultra and, eventually, the three-week assault on the Mountains-to-Sea Trail in North Carolina in 2012.
In the final days of the record attempt, Van Deren’s feet were so beat up that she had to start each day by crawling along the trail until, thanks to the familiar numbing of endorphins, she could stand up and start putting weight on them. Then she would resume clicking off the miles, one by one. By 12:20 P.M. on the twentieth day of the run, she and Millsaps were still four miles away from the crucial 1 P.M. Okracoke ferry—so they accelerated. They caught the ferry with just minutes to spare, and the ferry operator solved the mystery of the “airplane” that had buzzed them earlier: “You must have just come through those tornadoes back there,” he marveled. Two days later, Van Deren climbed an 85-foot sand dune in Jockey’s Ridge State Park to complete the trail in a new record of 22 days, 5 hours, and 3 minutes. “That,” she told a small crowd of supporters, “is the hardest thing I have ever done.”
In the Runner’s World profile, neuropsychologist Don Gerber, who worked with Van Deren at Craig Hospital in Denver, speculated that brain surgery might have made her a better runner. Thanks to the region of her brain that was damaged, he said, “Diane’s brain interprets pain differently than yours or mine does.”
Van Deren, for her part, rejects this suggestion. “They all think, ‘Oh, great, you don’t feel pain,’” she argued in a subsequent profile. “Well, shit—I don’t feel pain? I feel pain. I just push through it.” And indeed, her suffering during the run in North Carolina was evident.
Still, it’s hard to escape the sense that how Van Deren experiences a prolonged endurance challenge is inescapably different from how it is for most people. Unable to read maps or keep track of where she is on a course, she doesn’t focus on the challenge ahead of her. Hampered by poor short-term memory, she doesn’t dwell on the effort already expended, either. “I could be out running for two weeks, but if someone told me it was day one of a race,” she once joked, “I’d be like, ‘Great, let’s get started!’” Instead, she has no choice but to focus on the immediate task of forward motion, taking one more step, and then another. Semi-oblivious to the passage of time, she is also free of the cognitive challenge—the shackles, perhaps—of pacing herself. She is all hare and no tortoise—which, Aesopian morality aside, has its advantages.
To get a visceral feel for the struggle between mind and muscle, there’s no better place to stand than at the finish line of the Comrades Marathon, the largest, oldest, and most prestigious ultra-race (that is, any race longer than the standard marathon distance of 26.2 miles) in the world, as the clock ticks down toward its rigid 12-hour cutoff. By the time the runners enter the cricket stadium in the coastal city of Durban, they’ve covered 56 miles of relentlessly undulating terrain, the downhills shredding their quads as mercilessly as the uphills burn their lungs, under the fierce South African sun. (In odd-numbered years, the course runs in the opposite direction, finishing in the inland city of Pietermaritzburg.)
In 2010, I joined thousands of other spectators in the stadium counting down the final seconds as the race director assumed his position on the finish line, his back to the oncoming runners and his starter’s pistol pointed skyward. To be recorded as an official finisher of the race and receive a coveted finisher’s medal, you have to cross the line before the 12-hour gunshot is fired. Summoning their final reserves of willpower, the runners within striking distance began to urge their battered legs into a final, frantic sprint. As the gun cracked, one man staggered across the line in 11:59:59; mere strides behind him, another man bounced off the burly course marshals who had linked arms to barricade the finish chute, while vuvuzelas sounded a mocking raspberry of defeat.
I had come to South Africa on assignment for Outside magazine, to write about Tim Noakes’s contrarian ideas about the brain. The hook for my story was the Comrades debut of American runner Josh Cox, who was fresh off an impressive American record of 2:47:17 over 50K. I figured that if he conquered the distance, he (and Noakes, who was also in Durban to watch the race) would be able to offer vivid insights into the nature of the limits he’d had to overcome—and if the distance conquered him, the story would be even better. “The one guarantee in an event like this is the pain,” Cox told me, all too prophetically, when we met for coffee the day before the race. “You have to welcome it—say ‘Here you are, my friend.’” But Cox’s hopes fizzled just a few miles into the race, thanks to recurring bouts of stomach cramping and diarrhea that slowed him to a walk. As familiar as this debacle might be to marathoners, these were not the limits I was hoping to write about. (The story was eventually killed.)
Still, the race had given me a perfect excuse to make a pilgrimage to one of the temples of modern exercise physiology: the next day, I flew to the opposite end of the country to spend a week visiting Noakes’s lab at the University of Cape Town. At sixty, Noakes had graying temples, a near-permanent grin that expressed everything from disbelief to delight, and a habit of punctuating his sentences with the all-purpose interjection “ja.” His fourth-floor office had a postcard view of Table Mountain’s iconic ridgeline, and a museum’s worth of sports memorabilia—framed clippings, signed rugby shirts, battered old Onitsuka Tiger running shoes—covering the walls and filling a long trophy case. On my first day there, we talked almost nonstop for four hours (“I don’t normally have much lunch,” he said, a bit apologetically, when I proposed a break, “but you’re welcome to if you’d like”) as he recounted the origins of what has become known as the “central governor” theory.
In his keynote lecture at the 1996 ACSM conference, Noakes had argued that A. V. Hill’s concept of VO2max was fundamentally flawed: that physical exhaustion isn’t a consequence of the heart’s inability to pump enough oxygen to the muscles. Otherwise, he reasoned, the heart itself, and perhaps the brain, would also be starved of oxygen, with catastrophic results. He liked to point out a famous picture of South African marathoner Josia Thugwane, moments after winning the 1996 Olympic marathon, jogging around the track with silver medalist Lee Bong-Ju, whom he had outsprinted by just three seconds. “Do you notice he’s not dead?” he’d say, pointing at Lee. “What does that tell you? It means he could have run faster.”
But if Hill’s ideas about oxygen were wrong, what was the alternative? Noakes felt the brain had to be involved, and in a 1998 paper he coined the term “central governor,” borrowing terminology that A. V. Hill himself had used seventy years earlier. But the details remained unclear. Over the next decade, working with collaborators such as Alan St. Clair Gibson, then at the University of Cape Town, Frank Marino, of Charles Sturt University in Australia, and a succession of other students and postdoctoral researchers in his own lab, he began to assemble a coherent picture with two key planks. First, the limits we encounter during exercise aren’t a consequence of failing muscles; they’re imposed in advance by the brain to ensure that we never reach true failure. And second, the brain imposes these limits by controlling how much muscle is recruited at a given effort level (an idea we’ll explore in detail in Chapter 6).
The first point—the concept of “anticipatory regulation,” as Noakes and his colleagues refer to it—is subtle, so it’s worth pausing to unpack it. Long before Noakes, researchers had theorized that the brain might sense distress signals from elsewhere in the body and shut things down when the warnings exceeded a critical level. Exercise in the heat is a classic example: if you run to exhaustion on a treadmill in a hot room, your brain will stop driving your muscles when your core temperature hits a critical threshold of about 40 degrees Celsius. But Noakes takes this idea a step further, arguing that in real-world situations like running a 10K on a hot day, the brain gets involved long before you reach that critical temperature. You don’t hit 40 and keel over; you slow down and run at a pace that keeps you below 40.
The most controversial claim is that this pacing instinct isn’t entirely voluntary: your brain forces you to slow down, long before you’re in real physiological distress. In experiments led by Noakes’s student Ross Tucker, cyclists started at a slower pace right from the outset when the temperature was high—and crucially, the amount of muscle recruited by the brain was also lower within the first few minutes. At a conscious level, the cyclists were trying just as hard (as their reported level of effort indicated), but fewer muscle fibers in their legs were contracting thanks to their central governor’s inbuilt caution. The difference between the traditional and revised views of the brain’s role, Tucker explained during my visit in Cape Town, is that “they’re really looking at the off switch, whereas we’re looking at the dimmer control.”
It’s easy to get lost in the weeds of this debate. Over the course of my visit, I spent hours with various students, postdocs, and colleagues of Noakes, learning about the various tentacles of evidence that buttressed their brain-centered view of endurance. There were long-standing historical anomalies, like the puzzlingly low lactate levels observed when people exercise to exhaustion at high altitudes, contrary to what Hill’s model would predict. And there was a steady stream of new observations: an instant performance boost when you swish a carbohydrate drink in your mouth and then trick your brain by spitting it out; marathon runners setting world records despite supposedly crippling levels of dehydration; brain-altering drugs like Tylenol that boost endurance without any effect on the muscles or heart.
But when I asked Noakes for the single most convincing piece of evidence in favor of his theory, he said, without hesitation, “the end spurt.” How could the runners at Comrades, after pushing themselves through 56 miles of hell, summon a finishing sprint to beat the 12-hour limit? Conventional physiology suggests that you get progressively more fatigued over the course of a run, as muscle fibers fail and fuel stores are emptied. But then, when the end is in sight, you speed up. Clearly your muscles were capable of going faster in the preceding miles; so why didn’t they? “That shows that our understanding of fatigue is totally wrong,” Noakes said. It must be the brain that holds you back during long efforts, and then releases the final reserves when you’re nearly finished and the danger is past.
I always try to evaluate scientific theories dispassionately, based on evidence rather than anecdote. But in this case, my head was nodding involuntarily as Noakes spoke. This phenomenon wasn’t just familiar to me—it was, in some ways, my nemesis. In my mid-twenties, after a few injury-plagued years, I’d moved up from 1,500 to 5,000 meters. But every time I raced the longer distance, my pace would gradually tail off in the later stages of the race—and then I’d launch a sizzling last lap, leaving everyone (including myself) puzzled about why I had slowed down so much in the previous laps. At first I chalked it up to inexperience, and then to lack of concentration. And there may be some truth to both those explanations, but it felt like something deeper.
By the time I ran what would turn out to be my fastest 5,000, on a perfect evening in Palo Alto, California, in 2003, I’d decided I needed a new mental strategy: I would pretend I was only running 4,000 meters, and simply not worry if I had to jog the last kilometer. I wanted to run 2:45 per kilometer, and my first three kilometers were 2:45, 2:45, 2:47. The moment of truth: I knuckled down and vowed to run the fourth kilometer as hard as I could—but little by little, I drifted back from the pack I was running with. My next split was a disappointing 2:53. That was as fast as I could move my legs, and my pace slowed even more as I entered the final kilometer. I’d bitten off more than I could chew and was paying the price.
At most track races, officials mark the start of your final 400-meter lap by ringing a cowbell in your ear. It’s a handy Pavlovian cue that tells you that your suffering is almost over. And on that night on the Stanford track, I once again felt the curious and familiar transformation in my legs as the bell rang for me. I passed ten runners while running the last lap in around 57 seconds, a full 10 seconds faster than my average pace for the race. My last kilometer, at 2:42, was my fastest even though I only started sprinting with a lap to go. And—I can’t emphasize this enough—I was trying as hard as I could right up to the penultimate lap. A friend who’d come to watch asked if I was trying to impress her by slowing down late in the race so I could finish with a flourish. No, I said, I just … But I didn’t have an explanation. I didn’t understand it myself.
As it turns out, it’s not just me. Noakes showed me a study that he, Tucker, and Michael Lambert had published in 2006, analyzing the pacing patterns of almost every world record set in the modern era in the men’s 800 meter, mile, 5,000, and 10,000 meter races. For the three longer races, the pattern was startlingly consistent: after a quick start, the record breakers would settle into a steady pace until the final stages of the race. Then, even though they were running faster than they’d ever run before, and their oxygen-starved muscles were presumably awash in a sea of fatigue-inducing metabolites, they accelerated. Of the 66 world records in the 5,000 and 10,000 meters dating back to the early 1920s, the last kilometer was either the fastest of the race or the second fastest (behind the opening kilometer) in all but one. I was willing to attribute my own uneven pacing to incompetence—but these were the finest runners in history on the best day of their lives, which suggests that the pattern is more deeply ingrained than a mere pacing error.
In fact, there’s good reason to think that pacing is driven as much by instinct as by choice, according to Dominic Micklewright, a researcher at the University of Essex. Micklewright followed an unorthodox route to academia, going straight from high school to the Royal Navy, where he served as a diver on nuclear submarines for seven years, and then spending nine years as a police officer in London before studying sport and exercise psychology. His interest in pacing dates back to his training as a military diver, when he and the other trainees had to swim submerged to the other end of a 1,200-meter saltwater lake on Horsea Island, on Britain’s south coast, without using up their supply of air. “If they caught you breaching, you would get clobbered over the back of the head with an oar, or they’d throw in one of those underwater scare charges,” he recalls. With that incentive, you inevitably thought very carefully about the challenge of spending your energy—and oxygen—as frugally as possible.
In 2012, Micklewright had more than a hundred schoolchildren ranging in age from five to fourteen complete a battery of tests to assess their cognitive development, in order to slot them into one of the four developmental stages proposed by Swiss psychologist Jean Piaget; then the kids ran a race lasting about four minutes. The younger kids in the two lower Piaget stages opted for the unfettered sprint-and-then-hang-on-for-dear-life approach, starting fast then steadily fading. In contrast, the kids in the two higher Piaget stages had already adopted the familiar U-shaped pacing profile that world-record holders use: a fast start, gradual slowing, then a fast finish. Sometime around the age of eleven or twelve, in other words, our brains have already learned to anticipate our future energy needs and hold back something in reserve—a relic, Micklewright speculated, of the delicate balance between searching for food and conserving energy deep in our evolutionary past.
Not everyone buys Noakes’s argument that pacing patterns like the end spurt reveal the workings of a central governor. For example, it could be that you speed up at the end of a race because you finally tap into your precious but limited reserves of anaerobic energy, the high-octane fuel source that powers you in short races lasting less than a minute. But there are other hints that the finishing kick isn’t just physiological.
In 2014, a group of economists from the University of Southern California; the University of California, Berkeley; and the University of Chicago mined a massive dataset containing the finish times of more than nine million marathoners from races around the world spanning four decades. The distribution of finishing times looks a bit like the classic bell-shaped curve, but with a set of spikes superimposed. Around every significant time barrier—three hours, four hours, five hours—there are far more finishers than you’d expect just below the barrier, and fewer than you’d expect just above. Similar but smaller spikes show up at half-hour intervals, and there are barely perceptible ripples even at ten-minute increments. The cruel metabolic demands of the marathon, which inevitably depletes your stores of readily available fuel, mean that most people are slowing in the final miles. But with the right incentive, some are able to speed up—and it’s only the brain that can respond to abstract incentives like breaking four hours for an arbitrary distance like 26.2 miles.
A further curious detail from this dataset: the faster the runners were, the less likely they were able to summon a finishing sprint. Of the runners finishing near the three-hour barrier, about 30 percent were able to speed up in the final 1.4 miles of the race; 35 percent of those trying to break four hours sped up; and more than 40 percent of those trying to break five hours managed it. One possible interpretation is that, over the course of their long hours of training, the more committed runners had gradually readjusted the settings on their central governors, learning to leave as little as possible in reserve. Perhaps that’s another, slower way of achieving the run-in-the-present-moment strength that allows Diane Van Deren to race so close to her limits. I tried to trick myself into forgetting the last kilometer of my 5,000-meter races; Van Deren’s bittersweet gift is that she can forget without even trying.
Right from the start, the central governor proposal was highly controversial. After his 1996 speech, Noakes recalls, “people got very, very angry.” There were rebuttals and surrebuttals in a cycle that is still continuing, more than two decades later. In a 2008 article in the British Journal of Sports Medicine, Noakes argued that physiologists’ focus on VO2max had “produced a brainless model of human exercise performance.” Roy Shephard, an influential professor emeritus at the University of Toronto, shot back with an article in the journal Sports Medicine in 2009 titled “Is It Time to Retire the ‘Central Governor’?” Following a further exchange, Shephard concluded, “In the parlance of my North American colleagues, the time may now be ripe for proponents of the hypothesis to ‘Put up or shut up.’”
If anything, the controversies swirling around Noakes have increased since his retirement from the University of Cape Town in 2014. His book on hydration, Waterlogged, accused most of the world’s leading hydration researchers, including former colleagues and collaborators, of selling out to the commercial interests of sports-drink makers. He is now a vocal proponent of low-carb, high-fat diets for both health and athletic performance, leading him to disown the chapters he wrote on nutrition and carbohydrate loading in Lore of Running and earning him a disciplinary hearing that threatened to revoke his medical license after he tweeted advice to a breastfeeding mother about weaning babies onto a low-carb, high-fat diet.
As these other battles rage, the central governor controversy has to some extent faded into the background. With their own retirements on the horizon, it’s clear that the older generation of physiologists—Noakes’s peers—will never be convinced. On the other hand, says American Society of Exercise Physiologists cofounder Robert Robergs of Noakes’s influence, “most of the younger breed of exercise physiologists, in which I would group myself, recognize that, boy, some of his challenges are correct.” Whether the brain plays a role in defining the limits of endurance is no longer in doubt; the debate now is how.
One way to answer that question would be to peer inside the brain during strenuous exercise—a task that, until recently, was completely impossible. With advances in brain imaging, it’s now just very, very difficult. Functional magnetic resonance imaging, or fMRI, allows researchers to observe changes in blood flow to different regions of the brain with great spatial precision, but can’t capture changes that occur in less than a second or two. You also have to remain perfectly still inside the bore of a powerful magnet—a restriction that presents serious challenges for exercise studies. During my visit to Cape Town, Noakes showed me video of a Rube Goldberg–esque contraption, developed by collaborators in Brazil, that allows subjects to pedal an externally mounted bike (you can’t have metal parts in the same room as the MRI magnet) via a 10-foot-long driveshaft, while lying supine inside the cylindrical bore of the magnet, with cushions jammed around their heads to keep them still. But the initial results, published in 2015, didn’t manage to push subjects to exhaustion and produced unclear patterns of brain activity.
Other researchers have tried electroencephalography, or EEG, which uses a web of electrodes mounted on the head to measure the brain’s electrical activity. The advantage of EEG is that it can truly measure changes in real time; the disadvantage is that it’s highly sensitive to body or head motion—just blinking or letting your gaze wander garbles the results. Such studies are already yielding insights about the brain areas involved in fatigue, and (as we’ll see in Chapter 12) even being used to identify promising regions for electrical stimulation in an attempt to enhance endurance.
But these approaches are unlikely to ever truly pinpoint the central governor. “One of the big issues with the central governor is that it was initially portrayed to be a specific point, as if there was going to be one structure that did all this,” Tucker told me. “And people were like, show me the structure.” But endurance isn’t simply a dial in the brain; it’s a complex behavior that will involve nearly every brain region, Tucker suspects, which makes proving its existence (or nonexistence) a dauntingly abstract challenge.
Ultimately, the most convincing route to proving the central governor’s existence might also be the first and most obvious question that pops into people’s minds when they first hear about the theory, which is: Can you change its settings? Can you gain access to at least some of the emergency reserve of energy that your brain protects? There’s no doubt that some athletes are able to wring more out of their bodies than others, and those who finish with the most in reserve would dearly love to be able to reduce that margin of safety. But is this really a consequence of the brain’s subconscious decision to throttle back muscle recruitment—or is it, as a rival brain-centered theory of endurance posits, simply a matter of how badly you want it?