Читать книгу Vibroacoustic Simulation - Alexander Peiffer - Страница 64
2.3.4 Damping in Waves
ОглавлениеThere is no motion without damping, and a sound wave propagating over a long distance will vanish. This is considered by adding a damping component to the one-dimensional solution of the wave equation similar to the decay rate in (1.22)
(2.55)
Here α is the damping constant. There are several reasons for the attenuation of acoustic waves:
Viscous damping due to inner viscosity.
Thermal damping due to irreversible heat flow during wave propagation.
Molecular damping due to excitation of degrees of freedom of molecules (for additional content of the gas, e.g. humidity in air).
The damping loss η as defined in (1.68) is based on the amount of energy dissipated during one cycle of wave motion. The harmonic pressure wave performs one cycle of oscillation in one period in time T or space λ. So we get for η:
(2.56)
For small damping the exponential function can be approximated by ex≈1+x−… providing the relationship between damping loss and fluid wave attenuation.
(2.57)
Hence, the attenuation can be given by:
(2.58)
An appropriate way to consider this relationship in the solution of the wave equation is to include this into a complex wavenumber k:
(2.59)
This complex wavenumber naturally impacts the speed of sound
(2.60)
and the acoustic impedance
(2.61)
The shown quantities of the plane wave field can also be applied in three-dimensional space and they are summarized in Table 2.2.
Table 2.2 Field and energy properties of acoustic waves.
Quantity | Symbol | Formula | Units | Plane wave | Equation |
---|---|---|---|---|---|
Acoustic velocity | v | 1jωc0∇p | m/s | pρ0c0 | (2.35) |
Acoustic impedance | z | p/v | Pa s/m | z0=ρ0c0 | (2.38) |
Intensity | I | 12Re(pv*) | Pa m/s | ⟨I⟩T=p^22ρ0c0 | (2.47) |
Energy density | e | J/m 3 | ⟨e⟩T=p^22ρ0c02 | (2.52) | |
Acoustic power | Π | Π=IA | W | ⟨Π⟩T=Ap^22ρ0c0 | (2.43) |