Читать книгу В глубинах небесного океана. Научно-фантастическое рассуждение - Андрей Алексеевич Погребецкий - Страница 10
Глава 1.Вода в солнечной системе
Спутники Юпитера. Ио
ОглавлениеФото Ио, сделанное аппаратом «Галилео» в 1999 году. Желтоватый цвет говорит о высоком содержании серы. Тёмное пятно левее центра – извергающийся вулкан Прометей, его окружают светлые равнины, покрытые оксидом серы
«И́о или Иó (др.-греч. Ἰώ) – спутник Юпитера, самый близкий к планете из четырёх галилеевых спутников. Назван в честь мифологической Ио – жрицы Геры и возлюбленной Зевса. Имеет диаметр 3642 км, что делает её четвёртым по величине спутником в Солнечной системе.
Спутник является самым геологически активным телом Солнечной системы, на нём находится более 400 действующих вулканов. Такая активность обусловлена периодическим нагревом недр спутника в результате трения, которое происходит, скорее всего, из-за приливных гравитационных воздействий со стороны Юпитера, Европы и Ганимеда. У некоторых вулканов выбросы серы и диоксида серы настолько сильны, что поднимаются на высоту 500 километров. На поверхности Ио можно заметить более ста гор, которые выросли благодаря сжатию в основании силикатной коры спутника. Некоторые из этих пиков выше горы Джомолунгма на Земле – например, гора Южная Боосавла выше Джомолунгмы в два раза. В отличие от большинства спутников во внешней части Солнечной системы (которые в основном состоят из водяного льда), Ио в основном состоит из силикатных пород, окружающих расплавленное ядро из железа или сернистого железа. На большей части поверхности Ио простираются обширные равнины, покрытые замороженной серой или диоксидом серы.
Линии магнитного поля Юпитера, которые пересекают Ио, соединяют атмосферу Ио и нейтральное облако с верхними слоями полярной атмосферы Юпитера электрическим током, известным как потоковая трубка Ио. Этот ток служит причиной полярных сияний в юпитерианской атмосфере, которые именуются «следом Ио», а также сияний в атмосфере Ио. Частицы, идущие по этой трубке, делают полярные области Юпитера тёмными в видимом свете. Местоположение Ио и её «следа» в атмосфере Юпитера относительно Земли и Юпитера сильно влияет на интенсивность наблюдаемого радиоизлучения Юпитера: она сильно увеличивается, когда Ио в зоне видимости. КА «Юнона», который стартовал к Юпитеру 5 августа 2011 года и прибыл к нему в июле 2016, должен пролить свет на взаимодействие между Ио и магнитосферой Юпитера. Линии юпитерианского магнитного поля, проходящие сквозь ионосферу Ио, генерируют электрические токи, которые создают магнитное поле в недрах Ио. Считается, что индуцированное магнитное поле Ио генерируется в частично расплавленной силикатной магме в 50 километрах под поверхностью спутника. Схожие индуцированные магнитные поля «Галилео» обнаружил и на остальных галилеевых спутниках, где они генерируются предположительно подповерхностными водными океанами.
Магнитометр«Галилео» не обнаружил у Ио собственного магнитного поля, и это указывает на то, что в её железном ядре нет конвекции.
Приливный разогрев
Наиболее вероятным источником внутреннего тепла Ио (в отличие от Земли и Луны) считают приливный разогрев недр спутника в результате орбитальных резонансов Ио с Европой и Ганимедом, а не радиоактивный распад. Такой разогрев зависит от расстояния между Ио и Юпитером, эксцентриситета её орбиты, состава и физических характеристик её недр. Резонанс Лапласа с Европой и Ганимедом поддерживает эксцентриситет Ио и предотвращает скругление орбиты Ио, которое иначе происходило бы из-за диссипации приливной энергии. Орбитальный резонанс поддерживает и текущий радиус орбиты Ио (иначе приливы на Юпитере заставляли бы Ио медленно удаляться от него). Изменение высоты приливного горба Ио между апоцентром и перицентром может достигать 100 метров. Трение при этих подвижках создаёт в недрах Ио приливный разогрев, а он поддерживает расплавленной существенную часть мантии и ядра спутника. Это делает возможной вулканическую активность [75]. Приливный разогрев даёт примерно в 200 раз больше тепла, чем радиоактивный распад [9]. Оценки, сделанные на основе измерений теплового потока из «горячих» областей Ио, показали, что мощность приливного разогрева может достигать (0,6…1,6) ×108 МВт, что на два порядка превышает суммарную мощность, потребляемую человечеством (2×106 МВт). Модели орбиты Ио показывают, что мощность приливного разогрева недр Ио изменяется со временем, и текущий тепловой поток не репрезентативен для долгосрочной перспективы.
Поверхностный состав
Картирование состава и высокая плотность Ио указывают на то, что на Ио практически нет воды, хотя там были ориентировочно идентифицированы небольшие карманы водяного льда или гидратированных минералов (прежде всего на северо-западной стороне горы Gish Bar Mons). Эта нехватка воды, вероятно, связана с тем, что во времена формирования Солнечной системы Юпитер был достаточно горячим, чтобы такие летучие вещества, как вода, улетучились из окрестностей Ио (хотя и недостаточно горячим, чтобы так произошло и на более далёких спутниках).
Атмосфера
Полярное сияние в верхних слоях атмосферы Ио. Различными цветами светятся различные компоненты атмосферы. Зелёное свечение даёт натрий, красное – кислород, синее – вулканические газы, такие как диоксид серы. Изображение получено во время затмения на Ио
На изображениях Ио, сделанных высокочувствительными камерами во время затмения спутника, видны полярные сияния. Как и на Земле, эти сияния вызываются радиацией, поражающей атмосферу, но в случае Ио заряженные частицы прибывают по линиям магнитного поля Юпитера, а не от солнечного ветра. Обычно полярные сияния наблюдаются возле магнитных полюсов планет, но у Ио они самые яркие вблизи экватора. У Ио нет собственного магнитного поля, поэтому заряженные частицы, движущиеся вдоль магнитного поля Юпитера, беспрепятственно воздействуют на атмосферу спутника. Ярчайшие полярные сияния возникают вблизи экватора – там, где линии магнитного поля параллельны поверхности спутника и, следовательно, пересекают бо́льшую толщу газа. Полярные сияния в этих областях колеблются в зависимости от изменений ориентации наклонённого магнитного диполя Юпитера. Кроме экваториальных, наблюдаются и другие полярные сияния (тоже видимые на изображении выше): красное свечение атомов кислорода вдоль лимба Ио и зелёное свечение атомов натрия на её ночной стороне.» 9
Что же можно добавить, спутник действительно очень горячий, но тем не менее даже там в поверхностных карманах на таком жарком теле есть водяной лед.
Но, что если под поверхностью пусть и в небольшом количестве есть жидкая вода?
«Линии юпитерианского магнитного поля, проходящие сквозь ионосферу Ио, генерируют электрические токи, которые создают магнитное поле в недрах Ио. Считается, что индуцированное магнитное поле Ио генерируется в частично расплавленной силикатной магме в 50 километрах под поверхностью спутника. Схожие индуцированные магнитные поля „Галилео“ обнаружил и на остальных галилеевых спутниках, где они генерируются предположительно подповерхностными водными океанами.»
По сути такое горячее тело, не должно иметь жидкости, однако не будем спешить и примем во внимание еще один факт:
«Картирование состава и высокая плотность Ио указывают на то, что на Ио практически нет воды, хотя там были ориентировочно идентифицированы небольшие карманы водяного льда или гидратированных минералов (прежде всего на северо-западной стороне горы Gish Bar Mons).»
На Ио есть гидратированные минералы, то есть лед в породе, а значит он идет из под поверхности. На юпитерианской стороне с ее высокими температурами вряд ли возможно, а вот вода на противоюпитерианской стороне постоянно отвернутой от перегрева и геоактивности, создает более благоприятные условия для существования под поверхностью жидкой воды. Естественно будет упомянуто коррозийное свойство расширяющегося льда, который наверняка проложил себе грунтовый путь. Теплообмен от горячей стороны компенсирует поддержание тепла сверху, а приграничные районы дня и ночи станут причиной подтаивания внутрипородного льда. Сами же границы из-за постоянной активности с одной стороны и отсутствия ее с другой, а также постоянного температурного перепада явно создали там полости, пещеры. Продолжая далее рассуждение станет ясно, что «добравшийся» до теплой стороны и пещер лед, подтаивая, начнет вначале конденсировать от нагрева, а после пойдет теплым потоком по коррозированным щелям обратно, а после остывая снова к горячей стороне, и так до тех пор пока не возникнут полости-русла где сможет также попутно идти водяной пар. Он же в свою очередь более равномерно сможет поддерживать полостное, пещерное пространство под поверхностью на противоюпитерианской стороне. Да, кстати кислород (дающий красный свет при полярных сияниях) может быть «родом» из недр спутника Ио как показатель жидкой и газообразной воды (распад пара на H2 и O2 при определенной температуре и и электрическом поле – разряды между Ио и Юпитером) находящихся в глубинах.