Читать книгу В глубинах небесного океана. Научно-фантастическое рассуждение - Андрей Алексеевич Погребецкий - Страница 8

Глава 1.Вода в солнечной системе
Марс

Оглавление

«Марс – четвёртая по удалённости от Солнца (после Меркурия, Венеры и Земли) и седьмая по размерам (превосходит по массе и диаметру только Меркурий) планета Солнечной системы. Масса Марса составляет 0,107 массы Земли, объём – 0,151 объёма Земли, а средний линейный диаметр – 0,53 диаметра Земли.

Рельеф Марса обладает многими уникальными чертами. Марсианский потухший вулкан гора Олимп – самая высокая известная гора на планетах Солнечной системы (самая высокая известная гора в Солнечной системе – на астероиде Веста), а долины Маринер – самый крупный известный каньон на планетах (самый большой каньон в Солнечной системе обнаружен на спутнике Плутона – Хароне). Помимо этого, южное и северное полушария планеты радикально отличаются по рельефу; существует гипотеза, что Великая Северная равнина, занимающий 40% поверхности планеты, является импактным кратером; в этом случае он оказывается самым крупным известным ударным кратером в Солнечной системе.

Марс имеет период вращения и смену времён года, аналогичные земным, но его климат значительно холоднее и суше земного.

Вплоть до полёта к Марсу автоматической межпланетной станции «Маринер-4» в 1965 году многие исследователи полагали, что на его поверхности есть вода в жидком состоянии. Это мнение было основано на наблюдениях за периодическими изменениями в светлых и тёмных участках, особенно в полярных широтах, которые были похожи на континенты и моря. Тёмные длинные линии на поверхности Марса интерпретировались некоторыми наблюдателями как ирригационные каналы для жидкой воды. Позднее было доказано, что большинство этих тёмных линий являются оптической иллюзией.

На самом деле из-за низкого давления вода не может существовать в жидком состоянии на большей части (около 70%) поверхности Марса. Вода в состоянии льда была обнаружена в марсианском грунте космическим аппаратом НАСА «Феникс». В то же время собранные марсоходами «Спирит» и «Opportunity» геологические данные позволяют предположить, что в далёком прошлом вода покрывала значительную часть поверхности Марса. Наблюдения в течение последнего десятилетия позволили обнаружить в некоторых местах на поверхности Марса слабую гейзерную активность. По наблюдениям с космического аппарата «Mars Global Surveyor», некоторые части южной полярной шапки Марса постепенно отступают.

С февраля 2009 года по настоящее время орбитальная исследовательская группировка на орбите Марса насчитывает три функционирующих космических аппарата: «Марс Одиссей», «Марс-экспресс» и «Mars Reconnaissance Orbiter». Это больше, чем около любой другой планеты, помимо Земли.

Поверхность Марса в настоящий момент исследуют два марсохода: «Opportunity» и «Curiosity». На поверхности Марса также находятся несколько неактивных посадочных модулей и марсоходов, завершивших исследования.

Марс хорошо виден с Земли невооружённым глазом. Его видимая звёздная величина достигает —2,91m (при максимальном сближении с Землёй). Марс уступает по яркости лишь Юпитеру (во время великого противостояния Марса он может превзойти Юпитер), Венере, Луне и Солнцу. Противостояние Марса можно наблюдать каждые два года. Последний раз Марс был в противостоянии 22 мая 2016 года, он находился на расстоянии 76 млн км от Земли. Как правило, во время великого противостояния (то есть при совпадении противостояния с Землёй и прохождения Марсом перигелия своей орбиты) оранжевый Марс является ярчайшим объектом земного ночного неба после Луны (не считая Венеру, которая и тогда ярче него, но видна утром и вечером), но это происходит лишь один раз в 15—17 лет в течение одной-двух недель.


Среднее расстояние от Марса до Солнца составляет 228 млн. км (1,52 а.e.), период обращения вокруг Солнца равен 687 земным суткам. Орбита Марса имеет довольно заметный эксцентриситет (0,0934), поэтому расстояние до Солнца меняется от 206,6 до 249,2 млн км. Наклонение орбиты Марса к плоскости эклиптики равно 1,85°.


Полярный радиус примерно на 20 км-21 км меньше экваториального радиуса, а относительное полярное сжатие Марса f = (1 – Rп/Rэ) больше земного (соответственно 1/170 и 1/298), хотя период вращения у Земли несколько меньший, чем у Марса; это позволило в прошлом выдвинуть предположение об изменении скорости вращения Марса со временем.


Сравнение размеров Земли (средний радиус 6371,11 км) и Марса (средний радиус 3389,5 км)


Атмосфера и климат


Атмосфера Марса, снимок получен искусственным спутником «Викинг» в 1976 году. Слева виден «кратер-смайлик» Галле


Температура на планете колеблется от —153° C на полюсах зимой и до +20° C на экваторе летом (максимальная температура атмосферы, зафиксированная марсоходом «Спирит», составила +35° C [34]), средняя температура – около 210 К (—63° C). В средних широтах температура колеблется от —50° C зимней ночью до 0° C летним днем, среднегодовая температура – —50° C.

Атмосфера Марса, состоящая в основном из углекислого газа, очень разрежена. Давление у поверхности Марса в 160 раз меньше земного – 6,1 мбар на среднем уровне поверхности. Из-за большого перепада высот на Марсе давление у поверхности сильно изменяется. Примерная толщина атмосферы – 110 км.

По данным NASA (2004), атмосфера Марса состоит на 95,32% из углекислого газа; также в ней содержится 2,7% азота, 1,6% аргона, 0,145% кислорода, 210 ppm водяного пара, 0,08% угарного газа, оксид азота (NO) – 100 ppm, неон (Ne) – 2,5 ppm, полутяжёлая вода водород-дейтерий-кислород (HDO) 0,85 ppm, криптон (Kr) 0,3 ppm, ксенон (Xe) – 0,08 ppm (состав приведён в объёмных долях).

По данным спускаемого аппарата АМС «Викинг» (1976), в марсианской атмосфере было определено около 1—2% аргона, 2—3%азота, а 95% – углекислый газ. Согласно данным АМС «Марс-2» и «Марс-3», нижняя граница ионосферы находится на высоте 80 км, максимум электронной концентрации 1,7 × 105 электронов/см³ расположен на высоте 138 км, другие два максимума находятся на высотах 85 и 107 км.

Радиопросвечивание атмосферы на радиоволнах 8 и 32 см, проведённое АМС «Марс-4» 10 февраля 1974 года, показало наличие ночной ионосферы Марса с главным максимумом ионизации на высоте 110 км и концентрацией электронов 4,6 × 103 электронов/см³, а также вторичными максимумами на высоте 65 и 185 км.

Разреженность марсианской атмосферы и отсутствие магнитосферы являются причиной того, что уровень ионизирующей радиации на поверхности Марса существенно выше, чем на поверхности Земли. Мощность эквивалентной дозы на поверхности Марса составляет в среднем 0,7 мЗв/сутки (изменяясь в зависимости от солнечной активности и атмосферного давления в пределах от 0,35 до 1,15 мЗв/сутки) и обусловлена главным образом космическим излучением; для сравнения, на Земле среднемировая эквивалентная доза облучения от естественных источников, накапливаемая за год, равна 2,4 мЗв, в том числе от космических лучей 0,4 мЗв. Таким образом, за один-два дня космонавт на поверхности Марса получит такую же эквивалентную дозу облучения, какую на поверхности Земли он получил бы за год.

Атмосферное давление

По данным NASA на 2004 год, давление атмосферы на среднем радиусе составляет в среднем 636 Па (6,36 мбар), меняясь в зависимости от сезона от 400 до 870 Па. Плотность атмосферы у поверхности – около 0,020 кг/м³, общая масса атмосферы Марса – около 2,5 × 1016 кг (для сравнения: масса атмосферы Земли составляет 5,2 × 1018 кг).

В отличие от Земли, масса марсианской атмосферы сильно изменяется в течение года в связи с таянием и намерзанием полярных шапок, содержащих углекислый газ. Зимой 20—30% всей атмосферы намораживается на полярной шапке, состоящей из углекислоты.

В месте посадки зонда АМС «Марс-6» в районе Эритрейского моря было зафиксировано давление у поверхности 6,1 мбар, что на тот момент считалось средним давлением на планете, и от этого уровня было условлено отсчитывать высо́ты и глуби́ны на Марсе. По данным этого аппарата, полученным во время спуска, тропопауза находится на высоте примерно 30 км, где плотность воздуха составляет 5 × 10—7 г/см³ (как на Земле на высоте 57 км).


Ударная впадина Эллада – самое глубокое место Марса, где можно зафиксировать самое высокое атмосферное давление


Область Эллада настолько глубока, что атмосферное давление достигает примерно 12,4 мбар, что выше тройной точки воды (около 6,1 мбар), поэтому при достаточно высокой температуре вода могла бы существовать там в жидком состоянии; при таком давлении, однако, вода закипает и превращается в пар уже при +10° C.

На вершине высочайшей горы Марса, 27-километрового вулкана Олимп, давление может составлять от 0,5 до 1 мбар.

До высадки на поверхность Марса посадочных модулей давление было измерено за счёт ослабления радиосигналов с АМС «Маринер-4», «Маринер-6», «Маринер-7» и «Маринер-9» при их захождении за марсианский диск и выходе из-за марсианского диска – 6,5 ± 2,0 мбар на среднем уровне поверхности, что в 160 раз меньше земного; такой же результат показали спектральные наблюдения АМС «Марс-3». При этом в расположенных ниже среднего уровня областях (например, в марсианской Амазонии) давление, согласно этим измерениям, достигает 12 мбар.

Начиная с 1930-х годов, советские астрономы пытались определять давление атмосферы методами фотографической фотометрии – по распределению яркости вдоль диаметра диска в разных диапазонах световых волн. Французские учёные Б. Лио и О. Дольфюс производили с этой целью наблюдения поляризации рассеянного атмосферой Марса света. Сводку оптических наблюдений опубликовал американский астроном Ж. де Вокулёр в 1951 году, и по ним получалось давление 85 мбар, завышенное почти в 15 раз, поскольку не было отдельно учтено рассеяние света пылью, взвешенной в атмосфере Марса. Вклад пыли был приписан газовой атмосфере.

Климат


Циклон возле северного полюса Марса, снимки с телескопа «Хаббл» (27 апреля 1999 года)


Климат, как и на Земле, носит сезонный характер. Угол наклона Марса к плоскости орбиты почти равен земному и составляет 25,1919°; соответственно, на Марсе, так же как и на Земле, происходит смена времён года. Особенностью марсианского климата также является то, что эксцентриситет орбиты Марса значительно больше земного, и на климат также влияет расстояние до Солнца. Перигелий Марс проходит во время разгара зимы в северном полушарии и лета в южном, афелий – во время разгара зимы в южном полушарии и соответственно лета в северном. Вследствие этого климат северного и южного полушарий различается. Для северного полушария характерны более мягкая зима и прохладное лето; в южном полушарии зима более холодная, а лето более жаркое. В холодное время года даже вне полярных шапок на поверхности может образовываться светлый иней. Аппарат «Феникс» зафиксировал снегопад, однако снежинки испарялись, не достигая поверхности.

По сведениям НАСА (2004 год), средняя температура составляет ~210 K (—63° C). По данным посадочных аппаратов «Викинг», суточный температурный диапазон составляет от 184 K до 242 K (от —89 до —31° C) («Викинг-1»), а скорость ветра 2—7 м/с (лето), 5—10 м/с (осень), 17—30 м/с (пылевой шторм).

По данным посадочного зонда «Марс-6», средняя температура тропосферы Марса составляет 228 K, в тропосфере температура убывает в среднем на 2,5 градуса на километр, а находящаяся выше тропопаузы (30 км) стратосфера имеет почти постоянную температуру 144 K.

Исследователи из Центра имени Карла Сагана в 2007—2008 годах пришли к выводу, что в последние десятилетия на Марсе идёт процесс потепления. Специалисты НАСА подтвердили эту гипотезу на основе анализа изменений альбедо разных частей планеты. Другие специалисты считают, что такие выводы делать пока рано [. В мае 2016 года исследователи из Юго-Западного исследовательского института в Боулдере (Колорадо) опубликовали в журнале Science статью, в которой предъявили новые доказательства идущего потепления климата (на основе анализа данных Mars Reconnaissance Orbiter). По их мнению, этот процесс длительный и идёт, возможно, уже в течение 370 тыс. лет.

Существуют предположения, что в прошлом атмосфера могла быть более плотной, а климат – тёплым и влажным, и на поверхности Марса существовала жидкая вода и шли дожди. Доказательством этой гипотезы является анализ метеорита ALH 84001, показавший, что около 4 миллиардов лет назад температура Марса составляла 18 ± 4° C.

Главной особенностью общей циркуляции атмосферы Марса являются фазовые переходы углекислого газа в полярных шапках, приводящие к значительным меридиональным потокам. Численное моделирование общей циркуляции атмосферы Марса указывает на существенный годовой ход давления с двумя минимумами незадолго перед равноденствиями, что подтверждается и наблюдениями по программе «Викинг». Анализ данных о давлении выявил годовой и полугодовой циклы. Интересно, что, как и на Земле, максимум полугодовых колебаний зональной скорости ветра совпадает с равноденствиями. Численное моделирование выявляет также и существенный цикл индекса с периодом 4—6 суток в периоды солнцестояний. «Викингом» обнаружено подобие цикла индекса на Марсе с аналогичными колебаниями в атмосферах других планет.

Поверхность

Две трети поверхности Марса занимают светлые области, получившие название материков, около трети – тёмные участки, называемые морями. Моря сосредоточены главным образом в южном полушарии планеты, между 10 и 40° широты. В северном полушарии есть только два крупных моря – Ацидалийское и Большой Сирт.


Характер тёмных участков до сих пор остаётся предметом споров (возможно просачивается влага на поверхность) я. Они сохраняются, несмотря на то, что на Марсе бушуют пылевые бури. В своё время это служило доводом в пользу предположения, что тёмные участки покрыты растительностью. Сейчас полагают, что это просто участки, с которых, в силу их рельефа, легко выдувается пыль. Крупномасштабные снимки показывают, что на самом деле тёмные участки состоят из групп тёмных полос и пятен, связанных с кратерами, холмами и другими препятствиями на пути ветров. Сезонные и долговременные изменения их размера и формы связаны, по-видимому, с изменением соотношения участков поверхности, покрытых светлым и тёмным веществом.

Полушария Марса довольно сильно различаются по характеру поверхности. В южном полушарии поверхность находится на 1—2 км выше среднего уровня и густо усеяна кратерами. Эта часть Марса напоминает лунные материки. На севере большая часть поверхности находится ниже среднего уровня, здесь мало кратеров и основную часть занимают относительно гладкие равнины, вероятно, образовавшиеся в результате затопления лавой и эрозии. Такое различие полушарий остаётся предметом дискуссий. Граница между полушариями следует примерно по большому кругу, наклонённому на 30° к экватору. Граница широкая и неправильная и образует склон в направлении на север. Вдоль неё встречаются самые эродированные участки марсианской поверхности.

Выдвинуто две альтернативных гипотезы, объясняющих асимметрию полушарий. Согласно одной из них, на раннем геологическом этапе литосферные плиты «съехались» (возможно, случайно) в одно полушарие, подобно континенту Пангея на Земле, а затем «застыли» в этом положении. Другая гипотеза предполагает столкновение Марса с космическим телом размером с Плутон около 4 млрд лет назад. В этом случае Северный Полярный бассейн, занимающий 40% поверхности планеты, является импактным кратером и оказывается самым крупным известным ударным кратером в Солнечной системе. Его длина – 10,6 тыс. км, а ширина – 8,5 тыс. км, что примерно в четыре раза больше, чем крупнейший ударный кратер Эллада, до того также обнаруженный на Марсе, вблизи его южного полюса.


Большое количество кратеров в южном полушарии предполагает, что поверхность здесь древняя – 3—4 млрд лет. Выделяют несколько типов кратеров: большие кратеры с плоским дном, более мелкие и молодые чашеобразные кратеры, похожие на лунные, кратеры, окружённые валом, и возвышенные кратеры. Последние два типа уникальны для Марса – кратеры с валом образовались там, где по поверхности текли жидкие выбросы, а возвышенные кратеры образовались там, где покрывало выбросов кратера защитило поверхность от ветровой эрозии. Самой крупной деталью ударного происхождения является равнина Эллада (примерно 2100 км в поперечнике).

В области хаотического ландшафта вблизи границы полушарий поверхность испытала разломы и сжатия больших участков, за которыми иногда следовала эрозия (вследствие оползней или катастрофического высвобождения подземных вод), а также затопление жидкой лавой. Хаотические ландшафты часто находятся у истока больших каналов, прорезанных водой. Наиболее приемлемой гипотезой их совместного образования является внезапное таяние подповерхностного льда.


Долины Маринер на Марсе


В северном полушарии, помимо обширных вулканических равнин, находятся две области крупных вулканов – Фарсида и Элизий. Фарсида – обширная вулканическая равнина протяжённостью 2000 км, достигающая высоты 10 км над средним уровнем. На ней находятся три крупных щитовых вулкана – гора Арсия, гора Павлина и гора Аскрийская. На краю Фарсиды находится высочайшая на Марсе и высочайшая известная в Солнечной системе гора Олимп, которая достигает 27 км высоты по отношению к его основанию и 25 км по отношению к среднему уровню поверхности Марса, и охватывает площадь 550 км диаметром, окружённую обрывами, местами достигающими 7 км высоты. Объём Олимпа в 10 раз превышает объём крупнейшего вулкана Земли Мауна-Кеа. Здесь же расположено несколько менее крупных вулканов. Элизий – возвышенность до шести километров над средним уровнем, с тремя вулканами – купол Гекаты, гора Элизий и купол Альбор.

По другим данным, высота Олимпа составляет 21 287 метров над нулевым уровнем и 18 километров над окружающей местностью, а диаметр основания – примерно 600 км. Основание охватывает площадь 282 600 км². Кальдера (углубление в центре вулкана) имеет ширину 70 км и глубину 3 км.

Возвышенность Фарсида также пересечена множеством тектонических разломов, часто очень сложных и протяжённых. Крупнейший из них – долины Маринер – тянется в широтном направлении почти на 4000 км (четверть окружности планеты), достигая ширины 600 и глубины 7—10 км; по размерам этот разлом сравним с Восточноафриканским рифтом на Земле. На его крутых склонах происходят крупнейшие в Солнечной системе оползни. Долины Маринер являются самым большим известным каньоном в Солнечной системе. Каньон, который был открыт космическим аппаратом «Маринер-9» в 1971 году, мог бы занять всю территорию США, от океана до океана.


Панорама ударного кратера Виктория диаметром около 800 метров, снятая марсоходом «Оппортьюнити». Панорама составлена из снимков, которые были получены за три недели, в период с 16 октября по 6 ноября 2006


Панорама поверхности Марса в районе Husband Hill, снятая марсоходом «Спирит» 23—28 ноября 2005


Лёд и полярные шапки


Северная полярная шапка в летний период, фото Марс Глобал Сервейор. Длинный широкий разлом, рассекающий шапку слева – Каньон Северный


Внешний вид Марса сильно изменяется в зависимости от времени года. Прежде всего, бросаются в глаза изменения полярных шапок. Они разрастаются и уменьшаются, создавая сезонные явления в атмосфере и на поверхности Марса. Полярные шапки в максимуме разрастания могут достигать широты 50°. Диаметр постоянной части северной полярной шапки составляет 1000 км. По мере того как весной полярная шапка в одном из полушарий отступает, детали поверхности планеты начинают темнеть.

Северная и Южная полярные шапки состоят из двух составляющих: сезонной – углекислого газа и вековой – водяного льда. По данным со спутника «Марс-экспресс», толщина шапок может составлять от 1 м до 3,7 км. Аппарат «Марс Одиссей» обнаружил на южной полярной шапке Марса действующие гейзеры. Как считают специалисты НАСА, струи углекислого газа с весенним потеплением вырываются вверх на большую высоту, унося с собой пыль и песок.

В 1784 году астроном У. Гершель обратил внимание на сезонные изменения размера полярных шапок, по аналогии с таянием и намерзанием льдов в земных полярных областях. В 1860-х годах французский астроном Э. Ляи наблюдал волну потемнения вокруг тающей весенней полярной шапки, что тогда было истолковано как растекание талых вод и развитие растительности. Спектрометрические измерения, которые были проведены в начале XX века в обсерватории Ловелла во ФлагстаффеВ. Слайфером, однако, не показали наличия линии хлорофилла – зелёного пигмента земных растений.

По фотографиям «Маринера-7» удалось определить, что полярные шапки имеют толщину в несколько метров, а измеренная температура 115 K (—158° C) подтвердила возможность того, что она состоит из замёрзшей углекислоты – «сухого льда».

Возвышенность, которая получила название гор Митчелла, расположенная близ южного полюса Марса, при таянии полярной шапки выглядит как белый островок, поскольку в горах ледники тают позднее, в том числе и на Земле.

Данные аппарата Mars Reconnaissance Orbiter позволили обнаружить под каменистыми осыпями у подножия гор значительный слой льда. Ледник толщиной в сотни метров занимает площадь в тысячи квадратных километров, и его дальнейшее изучение способно дать информацию об истории марсианского климата.

Русла «рек» и другие особенности


Дельта высохшей реки Эберсвальде (фото Mars Global Surveyor)


Микрофотография конкреции гематита в марсианском грунте, снятая марсоходом «Оппортьюнити» 2 марта 2004 года (поле зрения 1,3 см), что свидетельствует о присутствии в геологическом прошлом воды в жидком состоянии


Так называемая «чёрная дыра» (колодец) диаметром более 150 м на поверхности Марса. Видна часть боковой стенки. Склон горы Арсия (фото «Марсианского разведывательного спутника»)


На Марсе имеется множество геологических образований, напоминающих водную эрозию, в частности, высохшие русла рек. Согласно одной из гипотез, эти русла могли сформироваться в результате кратковременных катастрофических событий и не являются доказательством длительного существования речной системы. Однако последние данные свидетельствуют о том, что реки текли в течение геологически значимых промежутков времени. В частности, обнаружены инвертированные русла (то есть русла, приподнятые над окружающей местностью). На Земле подобные образования формируются благодаря длительному накоплению плотных донных отложений с последующим высыханием и выветриванием окружающих пород. Кроме того, есть свидетельства смещения русел в дельте реки при постепенном поднятии поверхности.

В юго-западном полушарии, в кратере Эберсвальде обнаружена дельта реки площадью около 115 км². Намывшая дельту река имела в длину более 60 км.

Данные марсоходов НАСА «Спирит» и «Оппортьюнити» свидетельствуют также о наличии воды в прошлом (найдены минералы, которые могли образоваться только в результате длительного воздействия воды). Аппарат «Феникс» обнаружил залежи льда непосредственно в грунте.

Кроме того, обнаружены тёмные полосы на склонах холмов, свидетельствующие о появлении жидкой солёной воды на поверхности в наше время. Они появляются вскоре после наступления летнего периода и исчезают к зиме, «обтекают» различные препятствия, сливаются и расходятся. «Сложно представить, что подобные структуры могли сформироваться не из потоков жидкости, а из чего-то иного», – заявил сотрудник НАСА Ричард Зурек. Дальнейший спектральный анализ показал присутствие в указанных областях перхлоратов – солей, способных обеспечить существование жидкой воды в условиях марсианского давления.

28 сентября 2012 года на Марсе обнаружены следы пересохшего водного потока. Об этом объявили специалисты американского космического агентства НАСА после изучения фотографий, полученных с марсохода «Кьюриосити», на тот момент работавшего на планете лишь семь недель. Речь идёт о фотографиях камней, которые, по мнению учёных, явно подвергались воздействию воды.

На вулканической возвышенности Фарсида обнаружено несколько необычных глубоких колодцев. Судя по снимку аппарата «Марсианский разведывательный спутник», сделанному в 2007 году, один из них имеет диаметр 150 метров, а освещённая часть стенки уходит в глубину не менее чем на 178 метров. Высказана гипотеза о вулканическом происхождении этих образований.

На Марсе имеется необычный регион – Лабиринт Ночи, представляющий собой систему пересекающихся каньонов. Их образование не было связано с водной эрозией, и вероятная причина появления – тектоническая активность. Когда Марс находится вблизи перигелия, над лабиринтом Ночи и долинами Маринера появляются высокие (40—50 км) облака. Восточный ветер вытягивает их вдоль экватора и сносит к западу, где они постепенно размываются. Их длина достигает нескольких сотен (до тысячи) километров, а ширина – нескольких десятков. Состоят они, судя по условиям в этих слоях атмосферы, тоже из водяного льда. Они довольно густые и отбрасывают на поверхность хорошо заметные тени. Их появление объясняют тем, что неровности рельефа вносят возмущения в воздушные потоки, направляя их вверх. Там они охлаждаются, а содержащийся в них водяной пар конденсируется.

Грунт


Фотография марсианского грунта в месте посадки аппарата «Феникс»


Элементный состав поверхностного слоя грунта, определённый по данным посадочных аппаратов, неодинаков в разных местах. Основная составляющая почвы – кремнезём (20—25%), содержащий примесь гидратов оксидов железа (до 15%), придающих почве красноватый цвет. Имеются значительные примеси соединений серы, кальция, алюминия, магния, натрия (единицы процентов для каждого).

Согласно данным зонда НАСА «Феникс» (посадка на Марс 25 мая 2008 года), соотношение pH и некоторые другие параметры марсианских почв близки к земным, и на них теоретически можно было бы выращивать растения. «Фактически мы обнаружили, что почва на Марсе отвечает требованиям, а также содержит необходимые элементы для возникновения и поддержания жизни как в прошлом, так и в настоящем и будущем», сообщил ведущий исследователь-химик проекта Сэм Кунейвс. Также, по его словам, данный щелочной тип грунта (pH = 7,7) многие могут встретить на «своём заднем дворе», и он вполне пригоден для выращивания спаржи.

В месте посадки аппарата в грунте имеется также значительное количество водяного льда. Орбитальный зонд «Марс Одиссей» также обнаружил, что под поверхностью красной планеты есть залежи водяного льда. Позже это предположение было подтверждено и другими аппаратами, но окончательно вопрос о наличии воды на Марсе был решён в 2008 году, когда зонд «Феникс», севший вблизи северного полюса планеты, получил воду из марсианского грунта.

Данные, полученные марсоходом Curiosity и обнародованные в сентябре 2013 года, показали, что содержание воды под поверхностью Марса гораздо выше, чем считалось ранее. В породе, из которой брал образцы марсоход, её содержание может достигать 2% по весу.

Геология и внутреннее строение

В прошлом на Марсе, как и на Земле, происходило движение литосферных плит. Это подтверждается особенностями магнитного поля Марса, местами расположения некоторых вулканов, например, в провинции Фарсида, а также формой долины Маринер. Современное положение дел, когда вулканы могут существовать гораздо более длительное время, чем на Земле, и достигать гигантских размеров, говорит о том, что сейчас данное движение скорее отсутствует. В пользу этого говорит тот факт, что щитовые вулканы растут в результате повторных извержений из одного и того же жерла в течение длительного времени. На Земле из-за движения литосферных плит вулканические точки постоянно меняли своё положение, что ограничивало рост щитовых вулканов и, возможно, не позволяло достичь им такой высоты, как на Марсе. С другой стороны, разница в максимальной высоте вулканов может объясняться тем, что из-за меньшей силы тяжести на Марсе возможно построение более высоких структур, которые не обрушились бы под собственным весом. Возможно, на планете имеется слабая тектоническая активность, приводящая к образованию наблюдаемых с орбиты пологих каньонов.


Сравнение строения Марса и других планет земной группы


Современные модели внутреннего строения Марса предполагают, что он состоит из коры со средней толщиной 50 км (максимальная оценка – не более 125 км), силикатной мантии и ядра радиусом, по разным оценкам, от 1480 [104] до 1800 км. Плотность в центре планеты должна достигать 8,5 г/см³. Ядро частично жидкое и состоит в основном из железа с примесью 14—18% (по массе) серы, причём содержание лёгких элементов вдвое выше, чем в ядре Земли. Согласно современным оценкам, формирование ядра совпало с периодом раннего вулканизма и продолжалось около миллиарда лет. Примерно то же время заняло частичное плавление мантийных силикатов. Из-за меньшей силы тяжести на Марсе диапазон давлений в мантии Марса гораздо меньше, чем на Земле, а значит, в ней меньше фазовых переходов. Предполагается, что фазовый переход оливина в шпинелевую модификацию начинается на довольно больших глубинах – 800 км (400 км на Земле). Характер рельефа и другие признаки позволяют предположить наличие астеносферы, состоящей из зон частично расплавленного вещества. Для некоторых районов Марса составлена подробная геологическая карта.

Согласно наблюдениям с орбиты и анализу коллекции марсианских метеоритов, поверхность Марса состоит главным образом из базальта. Есть некоторые основания предполагать, что на части марсианской поверхности материал является более кварцесодержащим, чем обычный базальт, и может быть подобен андезитным камням на Земле. Однако эти же наблюдения можно толковать в пользу наличия кварцевого стекла. Значительная часть более глубокого слоя состоит из зернистой пыли оксида железа.

Магнитное поле

У Марса было зафиксировано слабое магнитное поле.

Согласно показаниям магнетометров станций «Марс-2» и «Марс-3», напряжённость магнитного поля на экваторе составляет около 60 гамм, на полюсе – 120 гамм, что в 500 раз слабее земного. По данным АМС «Марс-5», напряжённость магнитного поля на экваторе составляла 64 гаммы, а магнитный момент планетарного диполя – 2,4 × 1022 эрстед·см².


Магнитное поле Марса крайне неустойчиво, в различных точках планеты его напряжённость может отличаться от 1,5 до 2 раз, а магнитные полюса не совпадают с физическими. Это говорит о том, что железное ядро Марса находится в сравнительной неподвижности по отношению к его коре, то есть механизм планетарного динамо, ответственный за магнитное поле Земли, на Марсе не работает. Хотя на Марсе не имеется устойчивого всепланетного магнитного поля, наблюдения показали, что части планетной коры намагничены и что наблюдалась смена магнитных полюсов этих частей в прошлом. Намагниченность данных частей оказалась похожей на полосовые магнитные аномалии в мировом океане.

По одной теории, опубликованной в 1999 году и перепроверенной в 2005 году (с помощью беспилотной станции «Марс Глобал Сервейор»), эти полосы демонстрируют тектонику плит 4 миллиарда лет назад – до того, как гидромагнитное динамо планеты прекратило выполнять свою функцию, что послужило причиной резкого ослабления магнитного поля. Причины такого резкого ослабления неясны. Существует предположение, что функционирование динамо 4 млрд лет назад объясняется наличием астероида, который вращался на расстоянии 50—75 тысяч километров вокруг Марса и вызывал нестабильность в его ядре. Затем астероид снизился до предела Роша и разрушился. Тем не менее, это объяснение само содержит неясные моменты и оспаривается в научном сообществе.


Глобальная мозаика из 102 снимков, полученных искусственным спутником Марса «Викинг-1» 22 февраля 1980


Геологическая история

Согласно одной из гипотез, в далёком прошлом в результате столкновения с крупным небесным телом произошла остановка вращения ядра, а также потеря основного объёма атмосферы. Потеря легких атомов и молекул из атмосферы – следствие слабого притяжения Марса. Считается, что потеря магнитного поля произошла около 4 млрд. лет назад. Вследствие слабости магнитного поля солнечный ветер практически беспрепятственно проникает в атмосферу Марса, и многие из фотохимических реакций под действием солнечной радиации, которые на Земле происходят в ионосфере и выше, на Марсе могут наблюдаться практически у самой его поверхности.

Фактические данные

Научные гипотезы о существовании в прошлом жизни на Марсе присутствуют давно. По результатам наблюдений с Земли и данным космического аппарата «Марс-экспресс» в атмосфере Марса обнаружен метан. Позднее, в 2014 году, марсоход НАСА Curiosity зафиксировал всплеск содержания метана в атмосфере Марса и обнаружил органические молекулы в образцах, извлечённых в ходе бурения скалы Камберленд.


Распределение метана в атмосфере Марса в летний период в северном полушарии


В условиях Марса этот газ довольно быстро разлагается, поэтому должен существовать постоянный источник его пополнения. Таким источником может быть либо геологическая активность (но действующие вулканы на Марсе не обнаружены), либо жизнедеятельность бактерий. Интересно, что в некоторых метеоритах марсианского происхождения обнаружены образования, по форме напоминающие клетки, хотя они и уступают мельчайшим земным организмам по размерам. Одним из таких метеоритов является ALH 84001, найденный в Антарктиде в 1984 году.


ALH84001 под микроскопом


Важные открытия сделаны марсоходом «Curiosity». В декабре 2012 года были получены данные о наличии на Марсе органических веществ, а также перхлоратов. Те же исследования показали наличие водяного пара в нагретых образцах грунта. Интересным фактом является то, что «Curiosity» на Марсе приземлился на дно высохшего озера.

Анализ наблюдений говорит, что планета ранее имела значительно более благоприятные для жизни условия, нежели теперь. В ходе программы «Викинг», осуществлённой в середине 1970-х годов, была проведена серия экспериментов для обнаружения микроорганизмов в марсианской почве. Она дала положительные результаты: например, временное увеличение выделения CO2 при помещении частиц почвы в воду и питательную среду. Однако затем данное свидетельство жизни на Марсе было оспорено учёными команды «Викингов». Это привело к их продолжительным спорам с учёным из NASA Гильбертом Левиным, который утверждал, что «Викинг» обнаружил жизнь. После переоценки данных «Викинга» в свете современных научных знаний об экстремофилах было установлено, что проведённые эксперименты были недостаточно совершенны для обнаружения этих форм жизни. Более того, эти тесты могли убить организмы, даже если последние содержались в пробах. Тесты, проведённые в рамках программы «Феникс», показали, что почва имеет очень щелочной pH и содержит магний, натрий, калий и хлориды. Питательных веществ в почве достаточно для поддержания жизни, однако жизненные формы должны иметь защиту от интенсивного ультрафиолетового света.

На сегодняшний день условием для развития и поддержания жизни на планете считается наличие жидкой воды на её поверхности, а также нахождение орбиты планеты в так называемой зоне обитаемости, которая в Солнечной системе начинается за орбитой Венеры и заканчивается большой полуосью орбиты Марса. Вблизи перигелия Марс находится внутри этой зоны, однако тонкая атмосфера с низким давлением препятствует появлению жидкой воды на длительный период. Недавние свидетельства говорят о том, что любая вода на поверхности Марса является слишком солёной и кислотной для поддержания постоянной земноподобной жизни.

Отсутствие магнитосферы и крайне разрежённая атмосфера Марса также являются проблемой для поддержания жизни. На поверхности планеты идёт очень слабое перемещение тепловых потоков, она плохо изолирована от бомбардировки частицами солнечного ветра; помимо этого, при нагревании вода мгновенно испаряется, минуя жидкое состояние из-за низкого давления. Кроме того, Марс также находится на пороге т. н. «геологической смерти». Окончание вулканической активности, по всей видимости, остановило круговорот минералов и химических элементов между поверхностью и внутренней частью планеты.


Терраформированный Марс в представлении художника


Близость Марса и относительное его сходство с Землёй породило ряд фантастических проектов терраформирования и колонизации Марса землянами в будущем.

Марсоход «Curiosity» обнаружил сразу два источника органических молекул на поверхности Марса. Помимо кратковременного увеличения доли метана в атмосфере, аппарат зафиксировал наличие углеродных соединений в порошкообразном образце, оставшемся от бурения марсианской скалы. Первое открытие позволил сделать инструмент SAM на борту марсохода. За 20 месяцев он 12 раз измерил состав марсианской атмосферы. В двух случаях – в конце 2013 года и начале 2014 – «Curiosity» удалось обнаружить десятикратное увеличение средней доли метана. Этот всплеск, по мнению членов научной команды марсохода, свидетельствует об обнаружении локального источника метана. Имеет ли он биологическое или же иное происхождение, специалисты утверждать затрудняются вследствие нехватки данных для полноценного анализа.


Закат на Марсе 19 мая 2005 года. Снимок марсохода «Спирит», который находился в кратере Гусев


В полдень небо Марса жёлто-оранжевое. Причина таких отличий от цветовой гаммы земного неба – свойства тонкой, разреженной, содержащей взвешенную пыль атмосферы Марса. На Марсе рэлеевское рассеяние лучей (которое на Земле и является причиной голубого цвета неба) играет незначительную роль, эффект его слаб, но проявляется в виде голубого свечения при восходе и закате Солнца, когда свет проходит через атмосферу большее расстояние. Предположительно, жёлто-оранжевая окраска неба также вызывается присутствием 1% магнетита в частицах пыли, постоянно взвешенной в марсианской атмосфере и поднимаемой сезонными пылевыми бурями. Сумерки начинаются задолго до восхода Солнца и длятся долго после его захода. Иногда цвет марсианского неба приобретает фиолетовый оттенок в результате рассеяния света на микрочастицах водяного льда в облаках (последнее – довольно редкое явление).»6

Гидросфера Марса


Полярная шапка Марса

Так, на первых подробных изображениях поверхности Марса, полученные аппаратом Маринер-9, можно видеть сети долин (такие как долины Нергала) – элементы рельефа, свидетельствующие о присутствии в прошлом жидкой воды, в частности, подтопления грунтовыми водами склонов оврагов, поскольку они выглядят идентично эрозионным структурам на Земле, например, на Гавайских островах и в каньонах Эскаланте плато Колорадо.

Помимо разветвлённой сети долин, начиная с этих ранних снимков Маринера-9 различают элементы рельефа, связанные с интенсивным разливом и называемые каналами оттока. Они выглядят как уменьшенная копия крупнейших земных дилювиальных форм. На сегодняшний день считается общепризнанной гипотеза, что происхождение этих каналов также связано именно с жидкой водой, хотя теоретически возможны и другие варианты. Каналы оттока в основном моложе сетей долин, хотя встречаются и достаточно древние образования. По всей видимости, они сформировались в период, когда условия на поверхности Марса были примерно такими же, как сейчас.


Равновеликая азимутальная проекция Ламберта рельефа поверхности Марса от северного полюса до экватора, отснятого высотомером MOLA. Граница Северной низменности сильно напоминает берег океана, возможно, покрывавшего эту площадь в древности.


Аппаратом Mars Global Surveyor были получены и обычные снимки, и их анализ в 2000 году подтвердил существование каналов, сформированных потоками жидкой воды, а также песка и грязевых отложений, оставленных этими потоками. Эти элементы рельефа были настолько свежими, что можно говорить о том, что они формируются и в настоящий период. Позже наличие на тёплых склонах так называемых сезонных поверхностных линий – темных полос, появляющихся на поверхности планеты в теплое время года и похожих на отложения солей, – было засвидетельствовано снимками камеры HiRISE на орбитальном аппарате «Mars Reconnaissance Orbiter». А с помощью спектрометра CRISM на его борту в 2015 году наконец было подтверждено, что они образуются на месте периодических потоков солёной воды в жидком состоянии. Активные исследования сезонных поверхностных линий продолжаются, в том числе и с помощью других инструментов, например, THEMIS на орбитальном аппарате «Марс Одиссей».

Примерно в этот же период (в начале XXI в.) с помощью гамма-спектрометра на орбитальном аппарате «Марс Одиссей» было обнаружено большое количество водорода в приповерхностном слое Марса – особенно в приполярных областях – что, скорее всего, свидетельствует о нахождении там колоссального количества (35 ± 15% слоя по весу) воды в твёрдом состоянии. Присутствие льда было подтверждено данными марсохода «Феникс», работавшего возле северного полюса планеты: белое вещество, обнаруженное на дне вырытой им небольшой траншеи, испарилось за несколько дней, что характерно именно для льда. Аналогичный процесс был зарегистрирован аппаратом «Mars Reconnaissance Orbiter» и для вещества на дне свежих кратеров, в том числе и на низких широтах. На снимках аппаратов «Mars Global Surveyor», «Марс Одиссей», «Mars Reconnaissance Orbiter» и «Марс Экспресс» можно видеть ещё одно свидетельство повсеместного присутствия льда в приповерхностном слое Марса – формы рельефа, напоминающие земные ледники. А радиолокатор SHARAD на аппарате «Mars Reconnaissance Orbiter» подтвердил, что под тонким слоем пыли и грязи в этих образованиях (в том числе в средних широтах) действительно находится лёд.


Узкие овраги на склоне кратера Ньютон, возможно, созданные потоками жидкой воды. Снимок аппарата Mars Global Surveyor, 2000 г.


Динамика сезонных поверхностных линий на склоне кратера Ньютон, составленная по данным аппарата «Mars Reconnaissance Orbiter» в 2011 г.


Испарение льда на дне канавки, сделанной аппаратом «Феникс» в 2008 г.


Запасы воды на Марсе в настоящее время

Лёд


Содержание льда в приповерхностном слое, измеренное аппаратом Марс Одиссей на низких широтах (слева) и в приполярных областях (справа).


В настоящее время открытые и достоверно установленные объёмы воды на Марсе сосредоточены преимущественно в так называемой криосфере – приповерхностном слое вечной мерзлоты мощностью в десятки и сотни метров. Бо́льшая часть этого льда находится под поверхностью планеты, поскольку при нынешних климатических условиях не может существовать стабильно и оказавшись на поверхности, быстро испаряется; только в приполярных областях температура достаточно низкая для стабильного существования льда в течение всего года – это полярные шапки. Общий объём льда на поверхности и в приповерхностном слое оценивается в 5 млн км³ (а в более глубоких слоях, вероятно, могут быть сосредоточены гораздо бо́льшие запасы подмерзлотных солёных вод. Их объём оценивается в 54—77 млн км3.) В расплавленном состоянии он покрыл бы поверхность Марса слоем воды толщиной 35 м.

На полюсах концентрация водного льда в криосфере ожидаемо высока – до 100%. Объём льда в полярных шапках планеты составляет 2—2,8 млн км3 На широтах выше 60° она практически везде не менее 20%; ближе к экватору – в среднем несколько ниже, но всё же повсюду отлична от нуля, больше всего – до 10% – в районе вулканов в Элизиуме, в Сабейской земле и к северу от земли Сирен.

Вода на Марсе в прошлом

Водяной лёд не может стабильно существовать на Марсе при сегодняшних климатических условиях, однако подтверждено, что он присутствует в приповерхностном слое практически повсеместно, в том числе в приэкваториальных областях. Наиболее вероятно, что он оказался там в более ранний период эволюции планеты, когда угол наклона оси вращения Марса достигал больших значений порядка 45°. Численное моделирование показало, что при этом в полярных областях, которые становятся самыми тёплыми участками, H2O и CO2 сублимируются в атмосферу, затем вода конденсируется в лёд и снег в низких широтах, где теперь холодно, и таким образом полярные шапки смещаются к экватору. Подтверждением этому являются обнаруживаемые во многих (в том числе приэкваториальных) областях Марса формы рельефа, напоминающие земные ледники: очевидно, что они сформировались именно в такой период. Наоборот, когда наклон оси вращения уменьшается, в полярных областях снова становится холоднее, а в экваториальных – теплее; вода, замёрзшая там в приповерхностных слоях, сублимируется и снова конденсируется в ледяные полярные шапки. Последовательное чередование этих периодов можно отследить по формирующимся таким образом слоистым отложениям в полярных шапках, однако для этого необходимо сделать допущение о том, сколько времени требуется на образование каждого слоя. На предмет того, насколько частыми были такие смены, продолжается дискуссия: моделирование климата (ключевое влияние на который оказывает хаотический процесс изменения наклона угла оси вращения), особенно в геологических временных масштабах, на сегодняшний день невозможно с требуемой точностью.

Вода (по крайней мере чистая) в жидком состоянии сейчас также не может существовать на Марсе стабильно, однако судя по многочисленным свидетельствам, ранее ситуация была иной. Очевидно, что для этого температура и парциальное давление водяного пара в атмосфере должны были быть выше тройной точки на фазовой диаграмме, тогда как сейчас они далеки от соответствующих значений. Если повысится только температура, а давление останется низким, лёд сублимируется напрямую в водяной пар, минуя жидкую фазу. Между тем, даже повысить температуру на 50° очень затруднительно и возможно лишь посредством парникового эффекта. Однако лавинный парниковый эффект за счёт паров воды в атмосфере, в отличие от Земли, на Марсе невозможен из-за низких температур, при которых водяной пар не сможет стабильно оставаться в атмосфере и неизбежно сконденсируется на поверхности планеты обратно в лёд. Но другой парниковый газ – CO2 – вполне может существовать в условиях Марса, и благодаря ему температура может повыситься до значений, при которых стабилен водяной пар, а когда его становится в атмосфере больше, его парциальное давление может стать достаточным уже для существования жидкой воды. Для этого необходимо парциальное давление углекислого газа порядка 1 атм. Правда, если даже такой механизм имел место, неизвестно, куда делся теперь весь этот объём CO2, – он мог остаться в отложениях карбоната кальция либо улетучиться с остальной атмосферой.

Ряд авторов не разделяет эту гипотезу, полагая, что углекислый газ не может обеспечить достаточной интенсивности парникового эффекта. Предлагались механизмы, задействующие другие парниковые газы, например, водород, предположительно вулканического происхождения. На сегодняшний день на этот счёт нет общепринятой теории, во многом из-за трудностей моделирования парникового эффекта даже на Земле, в котором и по настоящий момент остаётся много неопределённости.

Эволюция гидросферы Марса


Так мог бы выглядеть древний Марс, если бы на нём имелся океан.


Большой интерес в геологическом прошлом планеты Марс вызывают два промежутка времени – Гесперийская эра и Амазонийская эра.

Гесперийская эра

В Гесперийскую эру (3,5—2,5 млрд лет назад) Марс достиг вершины своей эволюции и имел постоянную гидросферу. Северную равнину планеты в ту эру занимал солёный океан объёмом до 15—17 млн км³ и глубиной 0,7—1 км (для сравнения, Северный Ледовитый океан Земли имеет объём 18,07 млн км³). В отдельные промежутки времени этот океан распадался на два. Один океан, округлый, заполнял бассейн ударного происхождения в районе Утопии, другой, неправильной формы, – район Северного полюса Марса. В умеренных и низких широтах было много озёр и рек, на Южном плато – ледники. Марс обладал очень плотной атмосферой, аналогичной той, которая в то время была у Земли, при температуре у поверхности доходившей до 50° C и давлении свыше 1 атмосферы. Теоретически в Гесперийскую эру на Марсе могла существовать и биосфера.

Амазонийская эра

В Амазонийскую эру (около 2,5—1 млрд лет назад) климат на Марсе стал катастрофически быстро меняться. Происходили мощнейшие, но постепенно затухающие глобальные тектонические и вулканические процессы, в ходе которых возникли крупнейшие в Солнечной системе марсианские вулканы (Олимп), несколько раз сильно изменялись характеристики самой гидросферы и атмосферы, появлялся и исчезал Северный океан. Катастрофические наводнения, связанные с таянием криосферы привели к образованию грандиозных каньонов: в долину Ареса с южных нагорий Марса стекал поток полноводнее Амазонки; расход воды в долине Касей превышал 1 млрд м³/с. Миллиард лет назад активные процессы в литосфере, гидросфере и атмосфере Марса прекратились, и он принял современный облик. Виной глобальных катастрофических изменений марсианского климата считаются большой эксцентриситет орбиты и неустойчивость оси вращения, вызывающие огромные, до 45%, колебания потока солнечной энергии, падающей на поверхность планеты; слабый приток тепла из недр Марса, обусловленный небольшой массой планеты, и высокой разрежённостью атмосферы, обусловленной высокой степенью её диссипации.»7

Из всего того, что описано выше можно сделать следующий вывод на планете Марс были океаны, позже произошла катастрофа и была сорвана атмосфера, смещен центр тяжести (ядро), либо были образованы масконы (гравитационные концентрации масс, подобные лунным). В защиту этой версии говорит наличие полости имеющей высокое давление атмосферы, напомню, что в жидком виде вода отсутствует по причине низкого атмосферного давления, в то время как в твердом виде в довольно большом количестве. Видимо во время катастрофы часть воды выплеснулось в космос, другая вместе с поверхностным слоем грунта осела обратно. Катастрофа активизировала тектоническую активность, отсюда видимо столько углекислого газа, и уменьшившегося при горении кислорода. Не стоит забывать о грунтовых водах, гейзерах и прочих полостях (из которых поднимаются газы). Периодически на поверхность просачивается соленая вода. Следовательно, при наличии полостей и области высокого давления (скорее всего вызванной «областной» гравитацией), возможна вода в жидком виде, что самое интересное при более низких температурах. Всё новые и новые стороны привычных фактов, схожие принципы существование жидкой воды на планетах, но всё же у каждой они уникальны, и это не может не увлекать наш разум, нашу душу, всё наше естество. Тогда мы должны продолжить этот замечательный поиск. В добрый путь.

В глубинах небесного океана. Научно-фантастическое рассуждение

Подняться наверх