Читать книгу Сила молодости. Как настроить ум и тело на долгую и здоровую жизнь - Андрей Фоменко - Страница 19
Глава 3. Эпигенетика
Как работает эпигенетический механизм
ОглавлениеОсновные пути регуляции активности генов – модификация гистонов и метилирование. Гистоны – особые белки, на которые, как на катушку, намотана ДНК в ядре клетки, что образует плотную упаковку – нуклеосому. Чем плотнее эта упаковка, тем меньше ДНК доступна для ферментов, ведущих транскрипцию – синтез РНК по матрице ДНК. А поскольку меньше РНК, постольку меньше производится белка. Это значит, что ген в этой области будет мало или вовсе не активен. Однако сигналы, получаемые из внешней для клетки среды, могут способствовать более свободному расположению этих «катушек», благодаря чему ферменты получают доступ к этому участку ДНК. Это значит, что РНК, а затем и белки могут быть синтезированы – ген активен.
Второй способ регуляции генов – метилирование, то есть присоединение к ДНК метильной группы – CH3, в результате чего цитозин превращается в 5-метилцитозин. После получения сигнала метильная группа прикрепляется к ДНК, чем препятствует связыванию с ней ферментов и меняет плотность нуклеосомы, как и при модификации гистонов, делая гены неактивными. Процесс, обратный метилированию, то есть деметилирование, напротив, активирует ранее «молчавшие» гены, что способствует образованию новых белков.
Процесс активизации гена
Понимание механизмов, «включающих» и «выключающих» гены, может дать науке и медицине возможность управлять процессами старения, а также держать под контролем и лечить разные заболевания, имеющие в том числе наследственную природу. Скажем, в развитии рака часто «виновны» гены, «вышедшие из-под контроля», – их «заглушение» позволит прекратить дальнейшее разрастание опухоли. Поэтому за исследования в этой области присуждаются самые престижные научные премии: например, в 2006 году за открытие еще одного эпигенетического механизма – РНК-интерференции – американским ученым Эндрю Файру и Крейгу Меллоу была вручена Нобелевская премия.
Интересный факт
Развитие заболеваний только на 5–10 % зависит от генетики
Канадские ученые из Альбертского университета провели крупнейший метаанализ, обобщивший данные 569 генетических исследований за два десятилетия, и пришли к выводу, что связь между большинством болезней человека и генетикой очень низкая – всего 5–10 %. Это значит, что жизнь и здоровье человека не предопределяются генами, а в большей степени зависят от образа жизни и окружающей среды.
В своей работе исследователи изучали отношения между мутациями генов, известными как одиночные нуклеотидные полиморфизмы (снипы), и различными заболеваниями и состояниями. Многие снипы считаются факторами риска для развития сотен болезней, однако, как показали результаты метаанализа, эта связь весьма сомнительна.
Специалисты выяснили, что подавляющее большинство заболеваний, включая многие виды рака, диабет II типа, болезнь Альцгеймера, зависит от генетических факторов лишь на 5–10 % и не более. При этом существуют исключения: например, болезнь Крона, целиакия, возрастная макулярная дегенерация, для которых генетический риск составляет 40–50 %.
Несмотря на эти редкие исключения, стало очевидным, что в большинстве случаев развитие заболеваний связано с нарушением обмена веществ, факторами внешней среды и образа жизни или с воздействием опасных бактерий, вирусов и токсичных веществ.
Так что можно заключить, что вину за отклонения в здоровье не стоит перекладывать на наследственность, а лучше следить за безопасностью окружающей среды, в которой живет и работает человек: за качеством продуктов питания, воды, воздуха и т. д., – а также вести здоровый образ жизни.
Проследить за эпигенетикой в действии помогает наблюдение за жизнью однояйцевых близнецов, которые на момент рождения имеют идентичную ДНК. Эти наблюдения показывают, насколько сильными могут быть различия в экспрессии генов близнецов, если те будут жить в разных условиях и вести разный образ жизни. По идее, болезни у близнецов должны развиваться одинаково, однако на деле это далеко не так: в зависимости от различных факторов проявиться симптомы могут лишь у одного из них.
Этот вывод подтверждает исследование, которое было проведено в 2005 году [1]. Ученые изучили несколько десятков пар однояйцевых близнецов в возрасте от трех до 74 лет. Оказалось, что в детстве у детей действительно была похожая экспрессия генов, потому что те находились примерно в одинаковых условиях: жили в одном доме, ходили в одну и ту же школу, ели похожую пищу. Однако чем старше становились близнецы, тем больше находилось различий. А во взрослом возрасте, когда братья и сестры разъехались, стали вести неодинаковый образ жизни, увлекаться разными вещами, работать в разных профессиях, количество этих отличий увеличилось в несколько раз.
То же самое происходит и с обычными людьми: стоит только изменить образ жизни в ту или иную сторону – гены проявят себя по-новому. Причем такой измененный профиль метилирования мы способны передать своим детям! Почему бы тогда не воспользоваться этой способностью, чтобы заставить гены работать на укрепление состояния здоровья, замедление процесса старения и продление жизни? Знание о том, как работает эпигенетический механизм, может дать возможность управлять своим генетическим кодом и тем самым заставить «замолчать» «плохие» гены, доставшиеся в наследство, и активировать «хорошие». Так как же запустить цепочку полезных эпигенетических изменений?