Читать книгу Air Pollution, Clean Energy and Climate Change - Anilla Cherian - Страница 9
Box 1.2 What are short‐lived climate pollutants? (Excerpted from Climate & Clean Air Coalition)
ОглавлениеWhat are short‐lived climate pollutants?
Short‐lived climate pollutants are powerful climate forcers that remain in the atmosphere for a much shorter period of time than carbon dioxide (CO2), yet their potential to warm the atmosphere can be many times greater. Certain short‐lived climate pollutants are also dangerous air pollutants that have harmful effects for people, ecosystems and agricultural productivity.
The short‐lived climate pollutants black carbon, methane, tropospheric ozone, and hydrofluorocarbons are the most important contributors to the man‐made global greenhouse effect after carbon dioxide, responsible for up to 45% of current global warming. If no action to reduce emissions of these pollutants is taken in the coming decades, they are expected to account for as much as half of warming caused by human activity.
Source: CCAC website 2021.
So, the first question is what is the UN‐led global community doing about curbing the four principal SLCPs: BC, methane (CH4), tropospheric ozone (O3) and HFCs? A joint paper published by World Resources Institute (WRI) and Oxfam highlighted several key issues including that: ‘early and ambitious action’ to reduce SLCPs are ‘essential to achieving the goals of’ the PA and the Sustainable Development Goals (SDGs); actions to curb ‘highly potent’ SLCPs are critical in ensuring that the threshold of 1.5°C is not crossed ‘which will affect poor and vulnerable communities first and worst’; and actions aimed at reducing SLCPs also ‘delivers multiple benefits for development and human well‐being, supporting efforts to improve health, enhance food security, and alleviate poverty’. Equally significantly, the paper also pointed out that: ‘actions to mitigate these potent pollutants were often underrepresented in the first nationally determined contributions (NDCs) submitted by Parties to the Paris Agreement’ (Ross et al. 2018, p. 1). But, the main challenge to date is that there is no global or regionally relevant pollution mitigation strategy or protocol that covers emissions of SLCPs, particularly BC that covers the needs of those countries and communities where the problem of BC‐related PM pollution is most severely experienced. More recently, there has been an increasing push towards addressing the mitigation of HFCs within the context of the Kigali Amendment to the Montreal Protocol, and CH4 is a recognized GHG that is technically covered within the context of the voluntary national reporting requirements of the PA. To be clear, the focus of this book is primarily on the linkages between PM pollution, health and climate inequities and more circumscribed to understanding the relevance of curbing BC.
From the immediate perspective of this book, the decades‐old intergovernmental negotiations on climate change have consistently not addressed the issue of SLCPs like BC and O3, both of which have major public health impacts that negatively constrain the lives of poorest communities within developing countries and cities, particularly those in Asia and Africa.
BC is a solid particle or aerosol, not a gas, and results from emissions from gas and diesel engines, coal‐fired power plants and other sources including solid biomass (solid fuels). Atmospheric BC concentrations have been related to anthropogenic activities, and BC emission reductions represent a potential mitigation strategy that could reduce global climate forcing from anthropogenic activities in the short term and slow the associated rate of climate change (UNEP/WMO 2011; Bond et al. 2013). Curbing SLCPs and thereby mitigating toxic levels of air pollution can offer short‐term climate mitigation benefits, but what is often ignored and urgently needs to be highlighted is that increasing access to clean energy for all and transitioning to low carbon energy future provides valuable cost savings from human health perspectives in individual countries.
Reducing PM 2.5 emissions are critically important from a human health perspective, but what is often not reflected is that one of the principal components of PM 2.5 – BC emitted as a result of incomplete combustion of solid fuels has also been identified as an SLCP. While emission reductions of CO2 are absolutely integral to addressing anthropogenic climate change, SLCPs like BC, a component of PM pollution, have been found to contribute directly to adverse impacts on human health, leading to premature deaths worldwide, and also negatively impact on agriculture and rainfall patterns. An extensive, landmark cross‐national research assessment of the role of BC emissions specified that the predominant sources of BC are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses and open burning of biomass. The assessment estimated BC to be: ‘… the second most important human emission in terms of its climate forcing in the present‐day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short‐lived species that may either cool or warm climate’ (Bond et al. 2013, p. 5381).
Arguably, the nexus between increasing access to clean air, curbing fossil fuel related PM pollution and addressing climate change matters now more than ever for millions of lives that are amongst the poorest and most vulnerable in cities and communities. Highlighting the findings of new collaborative research on clean air and climate change conducted by Duke University, NASA and other entities on 48 contiguous US states and major cities before the US Congress, Drew Shindell (who heads CCAC Scientific Advisory Panel and is a lead author for the IPCC) provided a forceful case to prioritize climate change related health benefits of clean air in the US:
‘Over the next 50 years, keeping to the 2°C pathway would prevent roughly 4.5 million premature deaths, about 3.5 million hospitalizations and emergency room visits, and approximately 300 million lost workdays in the US. These large impacts reflect our updated understanding of the severe toxicity of air pollution and the dangers of heat exposure. Although it does not appear on death certificates it is indirectly responsible for a substantial fraction of heart diseases, including strokes, and respiratory diseases, including lower respiratory infections and chronic obstructive pulmonary disease.
The economic value of these health and labor benefits is enormous. The avoided deaths are valued at more than $37 trillion. The avoided health care spending due to reduced hospitalizations and emergency room visits exceeds $37 billion, and the increased labor productivity is valued at more than $75 billion. On average, this amounts to over $700 billion per year in benefits to the US from improved health and labor alone, far more than the cost of the energy transition’ (emphasis included, Shindell 2020).
The significance of the finding that reducing the severe toxicity of air pollution reduces morbidity, ill‐health burdens and costs that not just offset but are actually far greater than the costs of transitioning to clean energy has paramount importance not just for the US, but for those households, cities and countries faced with exposure to hazardous levels of air pollution. It is now or never for addressing the layering of the double threats – energy related air pollution and climate vulnerabilities – both of which are pressing challenges for the broader UN‐led global sustainable development agenda (SDA).