Читать книгу Как ГМО спасает планету и почему люди этому мешают - Анна Иванова - Страница 6
Часть 1. Или часть-матчасть
Глава 1, в которой мы вспоминаем, как все устроено
1.2. По порядку
ОглавлениеВ основе всего атомы. Если вернуться к аналогии про приготовление пиццы, то атомы будут отдельными крупинками муки.
Все в мире состоит из атомов. Атомы могут соединяться друг с другом, образуя молекулы. Сами атомы настолько малы, что без применения сложных технических подходов разглядеть их невозможно[11] даже в самый сильный микроскоп. Но можно, например, пытаться увидеть не саму молекулу, а восстановить ее вид по «теням», которые отбрасывают ее атомы в рентгеновских лучах, – этот метод носит название «рентгеноструктурный анализ». Еще молекулу можно поместить в магнитное поле, затем подвергнуть действию других магнитных полей, считать сигналы поведения атомов, возмущенных таким безобразием, и проанализировать их при помощи компьютера, воссоздав трехмерную структуру их расположения. Метод, основанный на явлении ядерно-магнитного резонанса (ЯМР), называется ЯМР-спектроскопия. А вот еще популярный метод: молекулу можно превратить в замороженный кристалл и «фотографировать» уже его. Это криоэлектронная микроскопия.
В общем, вот из таких микроскопических частиц (атомов) состоит и кристалл соли, и частица космической пыли у далекой звезды, и воздух, которым мы с вами дышим. И даже мы с вами. Не знаю, как вам, а мне удивительно сознавать, что я состою из тех же самых частиц, что миллиарды и миллиарды лет назад были частью далеких, ныне ярко погибших звезд.
В этом месте можно справедливо отметить, что все вокруг (и включая) нас лишь физика. Или химия. Все зависит только от того, физик или химик возьмется рассказывать эту историю.
В основе любого организма, живущего на планете Земля, лежат атомы углерода и водорода. Они – кирпичики, из которых построены все органические (то есть обязательно имеющие в своем составе углерод) вещества. Вполне возможно, на иных планетах и в иных Вселенных совсем другие атомы являются основой жизни. Эта идея уже много десятилетий любима не только писателями-фантастами, но и серьезными учеными. Однако на старушке Земле все сложилось именно так.
Часто вместе с упомянутой выше парочкой можно встретить также кислород, азот, фосфор и серу, а иногда и более экзотических ребят. Некоторые органические вещества, например, не стесняются иметь в своем составе атом магния или железа. Но кто их решится за это осуждать.
Основные молекулы, с которыми нам обязательно нужно познакомиться как можно ближе для комфортного чтения этой книги, называются аденин, тимин, гуанин и цитозин. Они – основные строительные и информационные единицы самой главной молекулы всего живого – молекулы ДНК[12]. Всю их группу называют азотистые основания (а иногда просто основания). Каждое азотистое основание в ДНК соединено с остатком молекулы сахара – дезоксирибозы. Она тоже состоит из атомов углерода, кислорода и водорода.
А теперь мне потребуется ваше воображение. Представьте себе, что молекула сахара – это такое смешное одушевленное существо, у которого есть две цепких лапки. Одну из лапок оно протянет к какому-то из азотистых оснований, например к тимину, и крепко за него ухватится. Вторую лапку протянет к другой такой же молекуле сахара и ухватится за нее. Но не «голыми руками», а через связку с использованием атома фосфора – этакую «фосфатную рукавичку». Взгляните на картинку. Такую конструкцию можно назвать «позвоночником» молекулы ДНК. Или сахарофосфатным остовом, поскольку он состоит из сахаров и фосфатных (содержащих в себе фосфор) групп. Вторая молекула сахара тоже не лыком шита: она точно так же имеет две лапки, одной из которых поймает свое азотистое основание – пусть это будет молекула гуанина, – а второй через такую же фосфатную рукавичку ухватит третий сахар. Эта третья молекула сахара тоже имеет две лапки…
Так звено за звеном образуется настоящая цепочка – одноцепочечная молекула ДНК. Важно заметить, что «информационный» состав цепочки определяется именно азотистыми основаниями – они в этой истории главные герои. Потому биоинформатики записывают «текст» ДНК так: АТГГГТТАЦАЦ.
Так, мы вроде разобрались, как ДНК устроена и даже в том, кто в ней носитель информации. Но как именно она эту информацию носит и передает? Этим вопросом миллиарды лет назад задалась и эволюция. И уж она-то нашла выход!
Любой школьник знает, что самый простой способ выполнить работу – это списать ее из учебника или у соседа по парте. И эволюция выбрала ровно тот же метод – списывание! Каждая новая одноцепочечная молекула ДНК «списана» с предыдущей молекулы. Этот же механизм лежит и в основе деления клеток (роста, развития и обновления тканей организмов), и «производства» новых организмов. Итак, новую цепочку ДНК всегда можно воссоздать по старой. Дело в том, что у каждого азотистого основания есть свой «напарник». У аденина это всегда тимин. У гуанина это всегда цитозин. Только с таким напарником он может устанавливать связи[13]. Это называется комплементарность, что переводится как взаимодополнение. Можно спорить, существуют ли «идеальные половинки» в человеческих отношениях, но вот в отношениях азотистых оснований они точно есть.
Получается, если у нас есть одна произвольная цепочка ДНК, то мы всегда можем построить на ее основе другую, комплементарную. А главное, что это может сделать и клетка любого организма! Напротив каждого аденина должен встать тимин, а напротив тимина, наоборот, – аденин. Напротив каждого цитозина должен встать гуанин. И наоборот. Получается, что цепи АТГГА комплементарна будет ТАЦЦТ. На положенное место в новой растущей цепи азотистое основание встает не само по себе, а в связке с сахаром – то есть в виде нуклеозида. В среде, где происходит копирование молекулы[14], все четыре варианта свободно плавают, пока не проплывут достаточно близко от растущей молекулы. Тогда в нужном месте и в нужное время они будут подхвачены ферментом[15], отвечающим за построение цепи. Плавают они, кстати, «надев удлиненную фосфатную рукавичку». В такой форме нуклеозид с фосфатным хвостиком называется нуклеотидом. Как только нуклеотид подплывет достаточно близко к положенному в цепи ДНК месту, он отбросит часть фосфатного хвостика, встроится в растущую цепь и приготовится остатками своей «рукавички» захватить следующий удачно проплывающий мимо нуклеотид.
Таким образом напротив старой одинарной ДНК-нити со временем вырастает вторая, которая как зеркало отражает информацию первой цепи. Сложно это представить? Возьмите с полки любую книгу и подойдите с ней к зеркалу. Поднесите книгу обложкой к зеркалу. Мы привыкли читать текст слева направо. То есть начало названия книги на левой стороне обложки, а конец – на правой. Но вот зеркало сейчас показывает вам иную картину! Заглавная буква названия оказалась справа от вас, а его конец – слева. Но при этом напротив буквы «к» по-прежнему стоит буква «к». Просто раньше она была началом, а теперь стала окончанием отзеркаленного названия. Так информация передается от нити к нити, от поколения к поколению.
Но еще кое-что всегда идет рука об руку со списыванием. Спросите у любого третьеклассника, уж он-то знает. Списать без единой ошибки практически невозможно! В этом простом правиле кроется и наше счастье, и наше горе: и тому, что эти строки набирает не одноклеточная амеба, и тому, что в любой момент времени у набирающего эти строки может начать развиваться раковое заболевание, мы обязаны тем самым ошибкам, допускаемым при «списывании». Но все-таки это уже другая история.
Связи между двумя комплементарными цепочками довольно хрупкие, а звенья в каждой из отдельных цепочек, наоборот, держатся очень крепко. Поэтому даже когда под влиянием каких-то факторов цепочки расходятся будто застежка-молния – денатурируют, после они так же легко за счет комплементарности «слипаются» обратно при первой возможности – то есть ренатурируют.
Почему такое разрушение вообще происходит? Часто под действием внешних факторов, например ультрафиолетового излучения (вот почему так важно пользоваться солнцезащитными средствами) или радиации, которая всегда присутствует в атмосфере Земли.
Скорость такого распада не очень высока и сильно зависит от условий, в которых находится ДНК. Например, погибший под снежной лавиной мамонт очень быстро замерзнет, и его ДНК может сохраниться в холодных условиях намного лучше, чем ДНК неосторожного кролика, провалившегося в тропическое озеро всего, скажем, лет 50 назад. Но чтобы ориентироваться на какие-то числа, можно сказать, что скорость полураспада ДНК составляет 521 год[16]. Как посчитали? Ученые взяли от давно вымерших нелетающих птиц моа 158 костей из трех мест гибели на территории Новой Зеландии, где они когда-то проживали. Разные кости датировались возрастом от 600 до 8000 лет. Из них выделили митохондриальную ДНК, составили математические модели, учитывающие температуру окружающей среды, особенности почвы, и вывели среднее значение: при температуре около 13 °C молекула ДНК длиной 242 нуклеотида распадается наполовину за 521 год. За следующий 521 год пополам распадется оставшаяся половина, затем еще раз пополам оставшаяся и так далее. Так что получается, что даже от вымершего всего какие-то 4000 лет назад на острове Врангеля последнего мамонта ученым могут перепасть вполне крупные фрагменты ДНК, по которым мы можем узнать очень много всего об этих прекрасных созданиях. А вот надеяться на получение хоть совсем маленького фрагмента ДНК динозавра нам не стоит. Уже через пару миллионов лет от молекулы ДНК даже в самых хороших условиях остается не так много – самая древняя на декабрь 2021 года ДНК имеет возраст чуть больше миллиона лет и получена из зуба мамонта буквально недавно[17]. Последние динозавры же вымерли аж 65 миллионов лет назад.
В этой главе мы обсудили, как хранится информация об организмах и как она передается каждой новой клетке и соответственно дочернему организму от родительского. Мы поняли, что можем сравнить информацию, хранящуюся в ДНК, с набором слов, с книгой, в которой записан организм. Но как эта записанная информация становится вполне вещественными «кирпичиками», из которых состоит организм?
То есть как перейти от слов к делу?
11
Не так давно David Nadlinger из Оксфордского университета все-таки смог сделать это с атомом стронция, сфотографировав его на обычный фотоаппарат при помощи некоторых технических ухищрений.
12
Не в обиду молекуле РНК, чью важность преуменьшить просто невозможно. Но ради любопытства спросите разных ученых о том, какая молекула в клетке главная. Исследователи РНК вам ответят, что это, конечно, РНК, а исследователи ДНК скажут то же самое о ДНК. Я работаю с геномными данными, а поэтому принадлежу ко второму лагерю.
13
Здесь речь идет о водородной связи – особом типе взаимодействия между молекулами, позднее мы остановимся на этом подробно.
14
У ядерных организмов, таких как мы с вами, мышка или кошка, это происходит в ядре клетки для ядерной ДНК и в митохондриях для митохондриальной, а у кактуса и морковки ДНК есть еще и в пластидах. Для безъядерных, таких как бактерии или вирусы, все иначе.
15
Ферменты – это белковые соединения, которые ускоряют химические реакции.
16
The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils Morten E. Allentoft et al Published:10 October 2012. https://doi.org/10.1098/rspb.2012.1745
17
Van der Valk T. et al. Million-year-old DNA sheds light on the genomic history of mammoths. Nature. 2021 Mar;591(7849):265–269. doi: 10.1038/s41586–021–03224–9. Epub 2021 Feb 17. PMID: 33597750; PMCID: PMC7116897. https://pubmed.ncbi.nlm.nih.gov/33597750/