Читать книгу Как ГМО спасает планету и почему люди этому мешают - Анна Иванова - Страница 9
Часть 1. Или часть-матчасть
Глава 1, в которой мы вспоминаем, как все устроено
1.5. Что бывает, когда неудачно обращаются со словами
ОглавлениеПервые подозрения о том, что истоки страхов перед ГМО лежат где-то вне темы самих ГМО, возникли у меня довольно давно. Со временем впечатление, что репутацию всей генетике как науке портят какие-то неучтенные факторы «за кадром», становилось все крепче. Может быть, дело в ассоциации с евгеникой, успешно маскировавашейся под науку десятки лет, но не имевшей никакого отношения ни к генетике, ни к науке вообще? Многочисленные разговоры с читателями блога и слушателями лекций показали, что в этом предположении достаточно много правды. Но не вся она. Свою роль здесь сыграло, например, слово «мутация», превращенное популярной культурой в нечто опасное и грозящее эволюционированием в зеленого монстра. Или вот еще хорошее название – «вырожденность генетического кода». Когда-то давно я устраивала в блоге опрос, что видят в этой фразе читатели. И в ответ многие люди описывали жутковатые образы и истории про кровосмесительные браки с рождением очень нездоровых детей.
Бороться с дурной репутацией чего бы то ни было очень тяжело. Медицинские генетики стремятся избегать использования слова «мутация» в практике и в литературе из-за его негативной коннотации. Теперь чаще можно встретить слова «вариант», «перестройка», «полиморфизм» (однобуквенная замена) и многие другие, соответствующие конкретному виду мутации, но не само дискредитированное слово. А вот слово «вырожденность» в ходу до сих пор. Кстати, по-английски этот термин звучит еще более жутко – degeneracy (дегенерация). Уф! Ну точно ничего хорошего за таким словом стоять не может!
К счастью, это вовсе не так. И за жутковатым термином стоит очень простой процесс, благодаря которому обеспечивается устойчивость организма к множеству случайно возникающих при репликации и транскрипции мута… вариантов.
Итак, любой геном (и каждый отдельный его кусочек – ген, и все межгенные интервалы) для биоинформатика выглядит как текст. Текст этот написан только буквами А, Т, Г и Ц (а в РНК вместо Т «пишут» У).
Каждый организм, будь то бактерия, гриб или человек, построен из белков самого разного рода, как любой дом построен из кирпичей и цемента. Белок – это аккуратно определенным образом уложенная длинная молекула, состоящая из отдельных элементов – аминокислот. Представьте себе бусы, уложенные в пространстве в красивой и сложной форме. Тогда все бусы – это белок, а отдельная бусина – аминокислотный остаток.
В конце XIX века, когда общество в большинстве своем смирилось с учением Дарвина, в разных концах света начали появляться организации с общей идеей «за чистоту» в основе. Чистоту государства, нации или сразу всего человечества, чего уж мелочиться. Одни считали, что право иметь детей должны иметь только определенные категории людей, другие выбрали путь уничтожения всех «не таких». Недостаточно умных, недостаточно здоровых, недостаточно белых. Во главе многих из них стояли люди, часто принимающие государственные решения или имеющие вес в таких вопросах. И если у вас в памяти сейчас всплыл образ фашистской Германии, идеи арийской расы и «всего цивилизованного мира», противостоящего этому злу, то нужно вспомнить – нацистская Германия случилась намного позже. За годы до этого и годы после тот самый «цивилизованный мир» часто следовал тем же идеям. (Iredale R. Eugenics and its relevance to contemporary health care. Nurs Ethics. 2000 May; 7(3):205–14. doi: 10.1177/096973300000700303. PMID: 10986944.) Пусть и в других масштабах. Часто не через убийство, а через принудительную стерилизацию (в конце XIX – начале XX века из-за уровня развития медицины саму операцию по стерилизации переживали не все, так что по факту это часто оборачивалось тем же убийством). Нацистская Германия пала в 1945-м. А принудительная стерилизация и по сей день остается в практике некоторых стран, пускай и неофициально. В разное время и в разных политических интересах принудительной стерилизации подвергали людей, чей балл IQ не дотягивал до установленного порога, людей, совершивших преступление и имевших уже в роду преступников, людей с диагностированными психическими заболеваниями. Многие из этих ужасных вещей делались под «прикрытием» генетики, хотя последняя часто не имела к этому никакого отношения: иногда гены могут сделать вклад в предрасположенность к тому или иному дурному поступку, но само решение мы принимаем на основании нашего воспитания и внутренних моральных норм, в других ситуациях человек может стать жертвой обстоятельств независимо от того, что записано в его геноме. «Фильтрация» по «генетическим» признакам получила собственное название – евгеника. А люди, защищавшие личные, государственные или иные интересы, возвели ее в статус настоящей науки. По иронии судьбы формальным основоположником евгеники стал Фрэнсис Гальтон – кузен Чарльза Дарвина, вдохновленный идеями своего знаменитого родственника.
Аминокислота – это тоже химическое соединение. Молекула. В основе молекулы аминокислоты, как вы уже, наверное, догадались, также лежат наши старые знакомцы – углерод, водород, кислород и азот. У всех аминокислот есть одна одинаковая для всех часть[23] и одна уникальная для каждой. Эта уникальная часть называется радикалом. 20 различных аминокислот могут входить в состав белка[24].
И тут мы переходим к самому интересному: откуда молекулярные машинки внутри клетки знают, какую именно «бусину» из 20 различных надо «нанизать» на растущую белковую цепь в нужный момент времени? И вот эта информация как раз и зашифрована в геноме! Отдельные инструкции для построения отдельного белка передаются при помощи тех самых матричных РНК, о которых мы говорили выше. А процесс перевода инструкции с языка РНК на язык аминокислот носит название «трансляция». Каждое «генетическое слово» – кодон – состоит из трех «букв». И оно всегда однозначно переводится в одну «белковую букву» – аминокислоту, которую стоит добавить к цепи. Этот язык понятен каждой живой клетке на планете, поэтому наш генетический код называют универсальным. Клетка лягушки и клетка кактуса поймут записанные в геноме инструкции одинаково. Что уж говорить о людях: разделенные языками и культурами, объединенные единым языком жизни, записанным в их ДНК.
Происходит трансляция внутри молекулярного заводика – рибосомы. Рибосома состоит из двух половинок – одна поменьше, другая побольше. «Текст инструкции» – готовая матричная РНК – соединяется с маленькой частью рибосомы, а затем получившаяся конструкция присоединяется к ее большей части. Нить мРНК будет протягиваться через эту конструкцию от одного своего конца к другому.
Получается, будто рибосома продвигается вдоль молекулы мРНК (мне это немного напоминает движущийся по монорельсе поезд). А внутри нее в это время происходит тот самый перевод РНК-овых слов – кодонов – в белковые буквы – аминокислоты (как это получается, описано чуть ниже). Происходит это с просто фантастической скоростью: 15 аминокислот в секунду присоединяются к растущей белковой цепи! А так как каждый кодон состоит из трех нуклеотидных «букв», то можно представить себе скорость движения рибосомы по нити РНК: между двумя ударами вашего сердца каждая рибосома в каждой клетке вашего тела успела пробежать по полсотни «букв»! А если вы очень быстро читаете, то за время чтения этого абзаца ваши рибосомы успели прочесть почти полторы тысячи нуклеотидов и посадить на растущую белковую цепь около пяти сотен аминокислот. А это, например, значит, что к моменту прочтения этих слов внутри каждого вашего эритроцита успели построиться по парочке новых молекул гемоглобина[25].
Переводить помогают еще одни маленькие труженики молекулярного фронта – молекулы транспортной РНК (тРНК). тРНК на первый взгляд самые обычные одноцепочечные молекулы, но есть у них две суперспособности. Первая заключается в том, что несколько участков каждой молекулы тРНК взаимно комплементарны. Так что стоит таким участкам в один момент времени оказаться слишком близко друг к другу, как они тут же «склеиваются». Происходит благодаря тому же принципу, что удерживает вместе две нити ДНК. Склеившись таким образом, из прямой ниточки тРНК превращаются в фигуру, напоминающую лист клевера: от «стебля» отходят три «листочка». Еще немного пространственных преобразований, и молекула примет свою трехмерную структуру. Участок молекулы, соответствующий «среднему лепестку» «клевера», получил название «антикодон». Кодон – «генетическое слово», состоит из трех нуклеотидных букв. Антикодон, соответственно, также из трех, комплементарных буквам кодона. Например, кодону АУГ будет соответствовать антикодон УАЦ, а кодону ААЦ – антикодон УУГ.
Вторая суперспособность тРНК – это умение крепить к противоположному концу молекулу аминокислоты, строго соответствующую тому кодону, который задан при помощи антикодона. Звучит ужасно запутанно. Здесь поможет разобраться картинка. Когда кодон мРНК оказывается внутри рибосомы, трудяги-тРНК тут же бегут к нему, размахивая каждый своей аминокислотой. Если антикодон подошедшей близко тРНК оказывается комплементарным кодону мРНК, находящемуся в данный момент «на рабочем столе» у рибосомы, тРНК отсоединяет свой полезный груз, и аминокислота присоединяется к растущей белковой цепи. Затем тРНК налегке уплывает из рибосомы, чтобы поймать себе следующую подходящую к ее антикодону аминокислоту. И повторить все сначала, доставив ее точно на рабочее место. Мне молекулы тРНК немного напоминают портняжек, которые бегают за клиентами с мерками в одной руке и готовым костюмом в другой. Стоит им встретить клиента, идеально подходящего под их мерки, как они тут же натягивают этот костюм на него.
Почему же в кодоне три буквы? И вот еще хороший вопрос: сколько же всего существует различных тРНК (то есть молекул с различными антикодонами)? Давайте посчитаем вместе. Мы знаем, что видов тРНК должно быть как минимум 20, чтобы можно было запрограммировать антикодонами все 20 необходимых аминокислот. Еще нам нужна комбинация для кодирования «точки» в тексте гена – стоп-кодона. Различных нуклеотидов же всего 4. Так что, если бы кодон состоял всего из одной буквы, то закодировать мы смогли бы лишь 4 аминокислоты. Маловато. Предположим далее, что кодон состоял бы из двух букв. Тогда на первой позиции может стоять любая из четырех (А, У, Г или Ц) и на второй позиции также любая из четырех: АА, АУ, АГ, АЦ, УА… Сколько всего таких вариантов? 4 x 4 = 16. А надо минимум 20 + 1. Снова не хватает. Перебираем варианты дальше. Для кодонов из трех букв на первом месте может стоять одна из 4 букв, на втором одна из 4 и на третьем также. Итого комбинаций: 4 × 4 × 4 = 64. Что даже больше, чем нужно. Но в данном случае эта избыточность дает очень сильные преимущества организмам. Поговорим об этом далее. А пока же подведем черту: по законам комбинаторики, во-первых, чтобы закодировать 20 аминокислот, нужно использовать как минимум трехбуквенные комбинации (поэтому второе название для кодона – триплет). А во-вторых, все по тем же законам комбинаторики, в клетке может существовать 64 различных тРНК[26].
Итак, получается, что любое комбинаторное сочетание из трех ДНК-овых букв дает всегда одну строго определенную аминокислоту (минус три возможные комбинации для стоп-кодона). Таким образом, зная это трехбуквенное сочетание, мы всегда можем точно сказать, какая аминокислота будет добавлена в белок. Видим кодон ЦГУ – знаем, что добавится аминокислота аргинин (R).
А если наоборот? Взгляните на таблицу. Каждой аминокислоте может соответствовать от одной комбинации (как у метионина) до сразу целых шести (как у лейцина). Но чаще все же это от двух до четырех различных комбинаций. Это свойство генетического кода называется избыточностью. Если мы увидим «белковую» букву R (аминокислоту аргинин), то будем в растерянности – как же именно перевести его обратно на язык РНК? Ведь и вариант ЦГУ будет правильный, и вариант АГГ, и еще целых 4 разных варианта! Эта невозможность произвести однозначный перевод в обратную сторону и называется страшным словом «вырожденность». Вырожденность генетического кода. Иногда мне кажется, что если бы в прошлом генетики придумывали термины попроще, больше людей доверяли бы сегодня этой науке.
Еще немножко про генетический код напоследок. Этакая вставка для читателей, которые любят самые хитрые подробности. Хотя мы и называем код универсальным, есть и здесь несколько исключений. В таких ситуациях мы называем код (или коды) альтернативным(и). Впервые альтернативный код обнаружили еще в 1979 году. Причем не где-то далеко, а прямо внутри нас! Оказалось, что генетический код митохондрий отличается от стандартного, о котором мы говорили на протяжении всей этой главы[27]. Вот, например, обычно кодон УГА означает «точку» – символ окончания трансляции (терминации), после которого аминокислотная цепочка отсоединяется от рибосомы. А вот в коде митохондрий УГА всего лишь кодирует аминокислоту триптофан! Кодон АУА вместо обычного для большинства живых организмов изолейцина соответствует метионину. Ну а так как митохондрии – органеллы внутри наших клеток, то получается совсем парадоксально: даже внутри наших тел действуют разные «правила перевода»! Но на самом деле это не так уж и удивительно, ведь мы уже знаем, что когда-то митохондрии были вольными и самостоятельными организмами, которых захватили и поставили себе на службу наши одноклеточные предки.
Своими вариациями генетического кода обладают также некоторые бактерии, водоросли, плоские черви, паразиты… А кое-кто из них даже умеет переключаться между тем, какой код им использовать, в зависимости от окружающих их условий[28]! Воистину, генетика – настоящее олицетворение утверждения, что из каждого правила просто обязаны быть исключения!
23
Но цену слова «всех» мы хорошо знаем. В данном случае стройную картину портит аминокислота пролин, имеющая немного другую структуру.
24
Хотя возможных аминокислот в природе существует несколько сотен, всего чуть более 200 из них встречаются в свободном виде, остальные же являются промежуточными продуктами обмена веществ (Wagner I., Musso H. (1983), New Naturally Occurring Amino Acids. Angew. Chem. Int. Ed. Engl., 22: 816–828. https://doi.org/10.1002/anie.198308161). Но только 20 из них – протеиногенные, они входят в состав белков. Именно к ним инструкции записаны в генетическом коде. Остальные аминокислоты синтезируются уже из них. Относительно недавно в список протеиногенных включили еще две аминокислоты – теперь их 22.
25
Средняя скорость чтения взрослого человека на русском языке составляет 120–180 слов в минуту. Значит, высокая скорость – это что-то около 200 слов в минуту. В приведенном абзаце к моменту сравнения всего около 100 слов. Молекула гемоглобина состоит из четырех полипептидных цепей – две одинаковые по 141 аминокислоте и две по 146 (Imamura T. [Human hemoglobin structure and respiratory transport]. Nihon Rinsho. 1996 Sep; 54(9):2320–5. Japanese. PMID: 8890557. https://pubmed.ncbi.nlm.nih.gov/8890557). Разные полипептиды собираются с разных мРНК на разных рибосомах, и эти процессы сборки могут происходить одновременно. Значит, для сборки одной молекулы гемоглобина, состоящей из четырех цепей, нам потребуется как минимум две (а как максимум 4) рибосомы. Если автор где-то перемудрил с вычислениями, обязательно напишите ему об этом.
26
Может, но реально 64–3! – говорит моя строгая научный редактор и она абсолютно права!
27
Barrell, B., Bankier, A. & Drouin, J. A different genetic code in human mitochondria. Nature 282, 189–194 (1979). https://doi.org/10.1038/282189a0. https://www.nature.com/articles/282189a0 / первое обнаружение описано у Barrell B.G.7, Bankier A.T., Drouin J. A different genetic code in human mitochondria. Nature. 1979 Nov 8;282(5735):189–94. doi: 10.1038/282189a0. PMID: 226894.
28
Речь о бактерии Acetohalobium arabaticum. Если эта бактерия растет в среде, где содержится пируват, то использует обычный код для 20 аминокислот. Но стоит пересадить ее на среду, где есть триметиламин, как бактерия добавляет в свой «алфавит» нестандартную 21-ю аминокислоту пирролизин. Dynamic expansion of the genetic code / Laure Prat, Ilka U. Heinemann, Hans R. Aerni, Jesse Rinehart, Patrick O’Donoghue, Dieter Söll / Proceedings of the National Academy of Sciences Dec 2012, 109 (51) 21070–21075; DOI: 10.1073/pnas.1218613110. https://www.pnas.org/content/109/51/21070.