Читать книгу Теорема века. Мир с точки зрения математики - Анри Пуанкаре - Страница 5
Наука и гипотеза
Часть II. Пространство
Глава III. Неевклидовы геометрические системы
ОглавлениеВсякое заключение предполагает наличие посылок; посылки же эти или сами по себе очевидны и не нуждаются в доказательстве, или могут быть установлены, только опираясь на другие предположения. Но так как этот процесс не может продолжаться беспредельно, то всякая дедуктивная наука, и в частности геометрия, должна основываться на некотором числе недоказуемых аксиом. Поэтому все руководства по геометрии прежде всего излагают эти аксиомы. Но между этими аксиомами приходится делать различие; некоторые их них, как, например, аксиома: «две величины, равные одной и той же третьей, равны между собой», суть предложения не геометрии, а анализа. Я рассматриваю их как аналитические априорные суждения и не буду заниматься ими. Но я должен остановиться на других аксиомах, которые относятся к геометрии. Большинство руководств излагают три такие аксиомы:
1. Между двумя точками можно провести лишь одну прямую.
2. Прямая есть кратчайшее расстояние между двумя точками.
3. Через данную точку можно провести лишь одну прямую, параллельную данной.
Хотя вообще и обходятся без доказательства второй из этих аксиом, но было бы возможно вывести ее из двух остальных и из тех гораздо более многочисленных аксиом, которые допускаются скрыто, как я выясню это далее.
Долгое время тщательно искали доказательства третьей аксиомы, известной под названием постулата Евклида. Сколько было потрачено сил в этой химерической надежде, положительно не поддается описанию. Наконец, в начале прошлого столетия и почти одновременно двое ученых, русский – Лобачевский и венгерский – Бояи, установили неопровержимо, что это доказательство невозможно; этим они почти совсем избавили нас от изобретателей геометрии без постулата Евклида; с тех пор парижская Академия наук получает не более одного-двух новых доказательств в год. Но вопрос не был исчерпан; его разработка не замедлила сделать новый большой шаг с опубликованием знаменитого мемуара Римана «Ober die Нуроthesen, welche der Geometrie zum Grunde liegen»[4]. Эта маленькая работа вызвала к жизни большинство новых работ, о которых я буду говорить дальше и среди которых следует назвать работы Бельтрами и Гельмгольца.
Геометрия Лобачевского. Если бы возможно было вывести постулат Евклида из других аксиом, то, отбрасывая этот постулат и допуская другие аксиомы, мы, очевидно, должны были бы прийти к следствию, заключающему в себе противоречие; поэтому было бы невозможно на таких положениях построить цельную геометрическую систему.
Но как раз это и сделал Лобачевский. Он допускает сначала, что через точку можно провести несколько прямых, параллельных данной прямой.
Кроме этой, все другие аксиомы Евклида он сохраняет. Из этих гипотез он выводит ряд теорем, между которыми нельзя указать никакого противоречия, и строит геометрию, непогрешимая логика которой ни в чем не уступает евклидовой геометрии. Теоремы, конечно, весьма отличаются от тех, к которым мы привыкли, и вначале кажутся несколько странными.
Так, сумма углов треугольника всегда меньше двух прямых углов; разность между этой суммой и двумя прямыми углами пропорциональна площади треугольника.
Невозможно построить фигуру, подобную данной, но имеющую иные размеры.
Если разделить окружность на n равных частей и провести в точках деления касательные, то эти n касательных образуют многоугольник, если радиус окружности достаточно мал; но если этот радиус достаточно велик, они не встретятся.
Бесполезно было бы увеличивать число этих примеров; теоремы Лобачевского не имеют никакого отношения к евклидовым, но тем не менее они логически связаны между собой.
Геометрия Римана. Вообразим себе мир, заселенный исключительно существами, лишенными толщины, и предположим, что эти «бесконечно плоские» существа расположены все в одной плоскости и не могут из нее выйти. Допустим далее, что этот мир достаточно удален от других миров, чтобы не подвергаться их влиянию. Раз мы начали делать такие допущения, ничто не мешает нам наделить эти существа способностью мышления и считать их способными создать геометрию. В таком случае они, конечно, припишут пространству только два измерения.
Но предположим теперь, что эти воображаемые существа, оставаясь все еще лишенными толщины, имеют форму поверхности шара, а не форму плоскости, и расположены все на одной и той же сфере, с которой не могут сойти. Какую геометрию они могут построить? Прежде всего, ясно, что они припишут пространству только два измерения; роль прямой линии для них будет играть кратчайшее расстояние от одной точки до другой на сфере, т. е. дуга большого круга; одним словом, их геометрия будет геометрией сферической.
То, что они назовут пространством, будет эта сфера, с которой они не могут сойти и на которой происходят все явления, доступные их познанию. Их пространство будет безгранично, так как по сфере всегда можно безостановочно идти вперед, и тем не менее оно будет конечно, никогда нельзя дойти до края, но можно совершить кругообразное движение.
Геометрия Римана есть не что иное, как сферическая геометрия, распространенная на три измерения. Чтобы построить ее, немецкий математик должен был отбросить не только постулат Евклида, но, кроме того, еще и первую аксиому: через две точки можно провести только одну прямую.
На сфере через две данные точки можно провести вообще один большой круг (который, как мы сейчас видели, играл бы роль прямой для наших воображаемых существ); но есть одно исключение: если две данные точки диаметрально противоположны, то через них можно провести бесконечное множество больших кругов. Так и в геометрии Римана (по крайней мере в одной из ее форм) через две точки вообще можно провести только одну прямую; но есть исключительные случаи, когда через две точки можно провести бесконечное количество прямых.
Между геометриями Римана и Лобачевского существует в некотором смысле противоположность.
Так, сумма углов треугольника:
– равна двум прямым в геометрии Евклида;
– меньше двух прямых в геометрии Лобачевского;
– больше двух прямых в геометрии Римана.
Число линий, которые можно провести через данную точку параллельно данной прямой:
– равно единице в геометрии Евклида;
– нулю в геометрии Римана;
– бесконечности в геометрии Лобачевского.
Прибавим, что пространство Римана конечно, хота и безгранично, в указанном выше смысле этих двух слов.
Поверхности с постоянной кривизной. Остается возможным одно возражение. Действительно, теоремы Лобачевского и Римана не содержат никакого противоречия; но как бы ни были многочисленны следствия, которые вывели из своих допущений эти два геометра, все же последние должны были остановиться, не исчерпав всех возможных выводов, потому что число их бесконечно. Но тогда кто поручится, что если бы они продолжали свои выводы далее, то все же не пришли бы к противоречию?
Это затруднение не существует для геометрии Римана, если ограничиваться двумя измерениями; в самом деле, геометрия Римана для двух измерений не отличается, как мы видели, от сферической геометрии, которая есть только ветвь обыкновенной геометрии и которая, следовательно, стоит вне всякой дискуссии.
Бельтрами, сведя также и геометрию Лобачевского для двух измерений к тому, что она стала только ветвью обыкновенной геометрии, опроверг таким же образом направленное против нее возражение. Вот как он пришел к этому. Рассмотрим на некоторой поверхности произвольную фигуру. Представим себе, что эта фигура начерчена на гибком и нерастяжимом полотне, наложенном на эту поверхность, так что, когда полотно перемещается и деформируется, различные линии этой фигуры могут изменять форму, не меняя длины. Вообще, эта гибкая и нерастяжимая фигура не может перемещаться, не оставляя поверхности; но есть некоторые особые поверхности, для которых подобное движение было бы возможно: это поверхности с постоянной кривизной.
Возвратимся к сравнению, которое мы сделали выше, и вообразим себе существа без толщины, живущие на одной из таких поверхностей. Движение фигуры, все линии которой сохраняют постоянную длину, с их точки зрения будет возможно. Подобное движение, наоборот, казалось бы абсурдным для существ без толщины, живущих на поверхности с переменной кривизной.
Поверхности с постоянной кривизной бывают двух родов. Одни из них – поверхности с положительной кривизной; они могут быть деформированы так, что накладываются на сферу. Следовательно, геометрия этих поверхностей сводится к сферической геометрии, которая есть геометрия Римана. Другие – поверхности с отрицательной кривизной. Бельтрами показал, что геометрия этих поверхностей есть не что иное, как геометрия Лобачевского. Таким образом, геометрии двух измерений, как Римана, так и Лобачевского, оказываются связанными с евклидовой геометрией.
Истолкование неевклидовых геометрических систем. Таким образом, устраняется возражение, касающееся геометрических систем двух измерений.
Легко было бы распространить рассуждение Бельтрами на геометрии трех измерений. Умы, не отрицающие пространства четырех измерений, не увидят в этом никакой трудности, но таковых немного. Поэтому я предпочитаю поступить иначе.
Возьмем некоторую плоскость, которую я буду называть основной, и построим нечто вроде словаря, установив соответствие в двойном ряду членов, написанных в двух столбцах, таким же образом, как в обычных словарях соответствуют друг другу слова двух языков, имеющие одинаковое значение.
И т. д.
Возьмем затем теоремы Лобачевского и переведем их с помощью этого словаря, как мы переводим немецкий текст с помощью немецко-французского словаря. Мы получим таким образом теоремы обыкновенной геометрии.
Например, теорема Лобачевского: «сумма углов треугольника меньше двух прямых» переводится так: «если криволинейный треугольник имеет сторонами дуги кругов, которые при продолжении пересекают основную плоскость ортогонально, то сумма углов этого криволинейного треугольника будет меньше двух прямых». Таким образом, как бы далеко мы ни развивали следствия из допущений Лобачевского, мы никогда не натолкнемся на противоречие. В самом деле, если бы две теоремы Лобачевского находились в противоречии, то то же самое имело бы место и для переводов этих двух теорем, сделанных при помощи нашего словаря; но эти переводы суть теоремы обыкновенной геометрии, а никто не сомневается, что обыкновенная геометрия свободна от противоречий. Однако откуда происходит в нас эта уверенность и справедлива ли она? Это – вопрос, который я не буду разбирать здесь, так как он потребовал бы подробного развития. Во всяком случае, указанное выше возражение отпадает полностью.
Это еще не все. Геометрия Лобачевского, допускающая таким образом конкретное истолкование, перестает быть пустым логическим упражнением и может получить применение; я не имею времени говорить здесь ни об ее приложениях, ни о той пользе, которую Клейн и я извлекли из нее для интегрирования линейных уравнений.
Указанное истолкование, впрочем, не единственное. Можно было бы установить несколько словарей, аналогичных предыдущему, и все они позволяли бы простым «переводом» преобразовывать теоремы Лобачевского в теоремы обыкновенной геометрии.
Скрытые аксиомы. Являются ли аксиомы, явно формулируемые в руководствах, единственными основаниями геометрии? Мы можем убедиться в противном, замечая, что даже если одну за другой отвергнуть эти аксиомы, все-таки еще останутся нетронутыми некоторые предложения, общие теориям Евклида, Лобачевского и Римана. Эти предложения должны опираться на некоторые предпосылки, которые геометры допускают в скрытой форме. Интересно попытаться выделить их из классических доказательств.
Стюарт Милль утверждал, что всякое определение содержит аксиому, так как, определяя, скрыто утверждают существование определяемого предмета. Это значило бы заходить слишком далеко; редко бывает, чтобы математики давали определение, не доказав существования определяемого объекта; если же они избавляют себя от этого труда, то обыкновенно в тех случаях, когда читатель сам легко может сделать соответствующее дополнение. Но не следует забывать, что слово «существование» имеет различный смысл тогда, когда речь идет о математическом объекте, и тогда, когда вопрос касается материального предмета. Математический объект существует, если его определение не заключает противоречия ни в самом себе, ни с предложениями, допущенными раньше.
Но если замечание Стюарта Милля не может быть приложено ко всем определениям, оно тем не менее остается справедливым для некоторых из них. Например, плоскость иногда определяют так: плоскость есть поверхность такого рода, что прямая, соединяющая две любые точки ее, укладывается целиком на этой поверхности.
Это определение, очевидно, скрывает в себе новую аксиому; правда, можно было бы его изменить, и это было бы лучше, но тогда надо было явно указать эту аксиому.
Другие определения могут дать повод к размышлениям, не менее важным.
Таково, например, определение равенства двух фигур: две фигуры равны, когда их можно наложить одну на другую. Чтобы сделать это, надо одну из них перемещать до тех пор, пока она не совпадет с другой; но как надо ее перемещать? Если мы зададим этот вопрос, то, без сомнения, нам ответят, что надо сделать это, не деформируя ее, – как если бы дело шло о неизменяемом твердом теле. Но тогда порочный круг будет очевиден.
Фактически это определение ничего не определяет; оно не имело бы никакого смысла для существа, обитающего в мире, где имеются только жидкости. Если оно кажется нам ясным, то просто потому, что мы привыкли к свойствам реальных твердых тел, которые не отличаются значительно от свойств идеальных твердых тел, сохраняющих все свои размеры неизменными.
Между тем, как ни несовершенно это определение, оно скрывает в себе некоторую аксиому.
Возможность движения неизменной фигуры не есть истина, очевидная сама по себе; порядок очевидности ее во всяком случае не превышает порядка очевидности постулата Евклида и несравним с порядком очевидности аналитических априорных суждений.
Впрочем, изучая геометрические определения и доказательства, мы видим, что приходится допустить без доказательства не только возможность этого движения, но и еще некоторые из его свойств. И прежде всего – то, которое вытекает из определения прямой линии. Ей дано много несовершенных определений, но истинным является следующее, подразумеваемое во всех доказательствах, где используется прямая линия:
«Может случиться, что движение неизменной фигуры будет таково, что все точки некоторой линии, принадлежащей этой фигуре, остаются неподвижными, между тем как все точки, расположенные вне этой линии, движутся. Подобная линия будет называться прямой». В этой формулировке мы намеренно отделили определение от аксиомы, которую оно скрывает в себе.
Многие из доказательств – как, например, доказательства равенства треугольников, доказательство возможности опустить перпендикуляр из точки на прямую – предполагают предложения, которые прямо не указываются, так как они требуют допущения возможности переносить фигуру в пространстве определенным образом.
Четвертая геометрия. Среди этих скрытых аксиом, мне кажется, есть одна, которая заслуживает некоторого внимания, так как, опуская ее, можно построить четвертую геометрию, столь же свободную от внутренних противоречий, как и геометрии Евклида, Лобачевского и Римана.
Чтобы доказать, что всегда можно восставить из точки А перпендикуляр к прямой АВ, рассматривают прямую АС, вращающуюся около точки А и сначала сливающуюся с неподвижной прямой АВ; ее поворачивают около А до тех пор, пока она не образует продолжения АВ.
Таким образом допускаются два предположения: во-первых, что подобное вращение возможно и, во-вторых, что можно продолжать его до тех пор, пока две прямые не составят продолжение одна другой. Если мы допустим первое и откинем второе, то придем к ряду теорем, еще более странных, чем теоремы Лобачевского и Римана, но в такой же степени свободных от противоречия.
Я приведу только одну из этих теорем, и притом не из самых странных: действительная прямая может быть перпендикулярна сама к себе.
Теорема Ли. Число аксиом, скрытым образом введенных в классические доказательства, больше, чем это необходимо. Было бы интересно свести это число к минимуму. Можно спросить себя сначала, осуществимо ли это желание – не беспредельно ли и число необходимых аксиом, и число воображаемых геометрий. В этого рода исследованиях первое место занимает теорема Софуса Ли. Ее можно выразить так:
Предположим, что допускаются следующие положения:
1. Пространство имеет n измерений.
2. Движение неизменяемой фигуры возможно.
3. Необходимо p условий, чтобы определить положение этой фигуры в пространстве.
Число геометрий, совместимых с этими положениями, будет ограниченное.
Я могу даже прибавить, что если n дано, то для p можно указать высший предел.
Следовательно, если допустить возможность движения неизменяемой фигуры, то можно будет придумать лишь конечное число (и даже довольно ограниченное) геометрических систем трех измерений.
Геометрии Римана. Между тем этот результат, по-видимому, находится в противоречии с заключениями Римана, так как этот ученый построил бесчисленное множество различных геометрий (та, которой обыкновенно дают его имя, есть не более чем частный случай).
Все зависит, говорит Риман, от способа, которым определяют длину кривой. Но существует бесконечное множество способов определять эту длину, и каждый из них может сделаться точкой отправления новой геометрии. Это совершенно верно; но большинство этих определений несовместимо с движением неизменяемой фигуры, которое предполагается возможным в теореме Ли. Эти геометрии Римана, столь интересные с различных точек зрения, могут быть лишь чисто аналитическими, и они не поддаются доказательствам, которые были бы аналогичны евклидовым.
Геометрии Гильберта. Наконец, Веронезе и Гильберт придумали новые, еще более странные геометрии, которые они назвали неархимедовыми. Они построили их, устранив аксиому Архимеда, в силу которой любая данная протяженность, умноженная на целое достаточно большое число, в конечном счете превзойдет любую данную протяженность, сколь бы велика она ни была. На неархимедовой прямой существуют все точки нашей обычной геометрии, но имеются множества других, которые вставляются между ними, так что между двумя отрезками, которые геометры старой школы рассматривали как смежные, оказывается возможным поместить множество новых точек. Одним словом, неархимедовы пространства уже не являются более непрерывностью второго порядка, если применять язык предыдущей главы, они суть непрерывность третьего порядка.
О природе аксиом. Большинство математиков смотрят на геометрию Лобачевского как на простой логический курьез; но некоторые из них идут дальше. Раз возможно несколько геометрий, то достоверно ли, что наша геометрия есть истинная? Без сомнения, опыт учит нас, что сумма углов треугольника равна двум прямым; но это потому, что мы оперируем треугольниками слишком малыми; разность, по Лобачевскому, пропорциональна площади треугольника; не может ли она сделаться заметной, когда мы будем оперировать большими треугольниками или когда наши измерения сделаются более точными? Таким образом, евклидова геометрия была бы только временной геометрией.
Чтобы обсудить это мнение, мы должны сначала спросить себя, в чем состоит природа геометрических аксиом. Не являются ли они синтетическими априорными суждениями, как говорил Кант?
Будь это так, они навязывались бы нам с такой силой, что мы не могли бы ни вообразить себе положение противоположного содержания, ни основать на нем теоретическое построение. Неевклидовых геометрий не могло бы быть.
Чтобы убедиться в этом, возьмем настоящее синтетическое априорное суждение, например то, которое, как мы видели в первой главе, играет первенствующую роль: если теорема верна для числа 1 и если доказано, что раз она справедлива для n, то она верна и для n + 1; в таком случае она будет справедлива для всех положительных целых чисел.
Попытаемся затем отвлечься от этого положения и, откинув его, построить ложную арифметику по аналогии с неевклидовой геометрией. Это нам не удастся. Сначала было даже стремление рассматривать эти суждения как аналитические.
С другой стороны, обратимся снова к нашим воображаемым существам без толщины; могли ли бы мы допустить, чтобы эти существа, если бы их ум был устроен по образу нашего, приняли евклидову геометрию, которая противоречила бы всему их опыту?
Итак, не должны ли мы заключить, что аксиомы геометрии суть истины экспериментальные? Но над идеальными прямыми или окружностями не экспериментируют; это можно делать только над материальными объектами. К чему же относятся опыты, которые служили бы основанием геометрии?
Ответ ясен. Выше мы видели, что рассуждения ведутся постоянно так, как если бы геометрические фигуры были подобны твердым телам. Следовательно, вот что заимствовала геометрия у опыта: свойства твердых тел.
Свойства света и его прямолинейное распространение также были поводом, из которого вытекли некоторые предложения геометрии, в частности предложения проективной геометрии; так что с этой точки зрения можно было бы сказать, что метрическая геометрия есть изучение твердых тел, а проективная геометрия – изучение света.
Но трудность остается в силе, и она непреодолима. Если бы геометрия была опытной наукой, она не была бы наукой точной и должна была бы подвергаться постоянному пересмотру. Даже более, она немедленно была бы уличена в ошибке, так как мы знаем, что не существует твердого тела абсолютно неизменного.
Итак, геометрические аксиомы не являются ни синтетическими априорными суждениями, ни опытными фактами. Они суть условные положения (соглашения): при выборе между всеми возможными соглашениями мы руководствуемся опытными фактами, но самый выбор остается свободным и ограничен лишь необходимостью избегать всякого противоречия. Поэтому-то постулаты могут оставаться строго верными, даже когда опытные законы, которые определяли их выбор, оказываются лишь приближенными.
Другими словами, аксиомы геометрии (я не говорю об аксиомах арифметики) суть не более чем замаскированные определения.
Если теперь мы обратимся к вопросу, является ли евклидова геометрия истинной, то найдем, что он не имеет смысла. Это было бы все равно что спрашивать, какая система истинна – метрическая или же система со старинными мерами, или какие координаты вернее – декартовы или же полярные. Никакая геометрия не может быть более истинна, чем другая; та или иная геометрия может быть только более удобной. И вот, евклидова геометрия есть и всегда будет наиболее удобной по следующим причинам:
1. Она проще всех других; притом она является таковой не только вследствие наших умственных привычек, не вследствие какой-то, я не знаю, непосредственной интуиции, которая нам свойственна по отношению к евклидову пространству; она наиболее проста и сама по себе, подобно тому как многочлен первой степени проще многочлена второй степени; формулы сферической тригонометрии сложнее формул прямолинейной тригонометрии, и они показались бы еще более сложными для аналитика, который не был бы знаком с геометрическими обозначениями.
2. Она в достаточной степени согласуется со свойствами реальных твердых тел, к которым приближаются части нашего организма и наш глаз и на свойстве которых мы строим наши измерительные приборы.
4
Analysis Situs – анализ положения, в современной терминологии – топология. – Прим. ред.