Читать книгу Теорема века. Мир с точки зрения математики - Анри Пуанкаре - Страница 6
Наука и гипотеза
Часть II. Пространство
Глава IV. Пространство и геометрия
ОглавлениеНачнем с маленького парадокса.
Существа, разум которых был бы подобен нашему и которые имели бы такие же органы чувств, как и мы, но которые не получили бы никакого предварительного воспитания, могли бы получить от соответственно подобранного внешнего мира такие впечатления, что им пришлось бы построить геометрию иную, чем евклидова, и разместить явления этого внешнего мира в пространстве неевклидовом или даже в пространстве четырех измерений.
Для нас, ум которых сформировался под влиянием окружающего нас мира, не составило бы никакой трудности отнести к нашему евклидову пространству явления этого нового мира, если бы мы были в него внезапно перенесены. И, напротив, если бы существа из того мира были перенесены к нам, они должны были бы отнести наши явления к неевклидову пространству.
Но ведь с небольшими усилиями этого же могли бы достигнуть и мы.
Тот, кто всю свою жизнь посвятил бы такой задаче, может быть, оказался бы в состоянии представить себе четвертое измерение.
Пространство геометрическое и пространство представлений. Часто говорят, что образы внешних предметов локализованы в пространстве, что они даже не могут образоваться иначе, как при этом условии. Говорят также, что это пространство, которое таким образом служит готовым кадром наших ощущений и представлений, тождественно с пространством геометров, всеми свойствами которого оно обладает.
Всем, кто так думает, предыдущая фраза должна показаться крайне странной. Но надо рассмотреть, не обманываются ли они некоторой иллюзией, которую более глубокий анализ мог бы рассеять.
Каковы, прежде всего, свойства пространства в собственном смысле? Я хочу сказать – того пространства, которое является предметом геометрии и которое я назову пространством геометрическим. Вот некоторые из наиболее существенных его свойств:
1. Оно непрерывно.
2. Оно бесконечно.
3. Оно имеет три измерения.
4. Оно однородно, т. е. все точки его тождественны между собой.
5. Оно изотропно, т. е. все прямые, которые проходят через одну и ту же точку, тождественны между собой.
Сравним теперь его с кадром наших представлений и ощущений, который я мог бы назвать пространством представлений.
Пространство визуальное. Рассмотрим сначала чисто зрительное впечатление, обусловливаемое изображением, возникающим на сетчатке. Краткий анализ показывает, что это изображение непрерывно, но обладает только двумя измерениями; это уже составляет отличие между пространством геометрическим и тем, что можно было бы назвать чисто визуальным пространством. Далее, этот образ заключен в ограниченном кадре.
Наконец, существует еще одно отличие, не менее важное: это чисто визуальное пространство неоднородно. Различные точки сетчатки – независимо от изображений, которые могут на них возникать, – играют не одну и ту же роль. Никак нельзя считать желтое пятно тождественным с точкой, лежащей у края сетчатки. В самом деле, здесь не только самый предмет производит гораздо более живые впечатления, но здесь, как и во всяком ограниченном кадре, точка, занимающая центр кадра, не будет казаться тождественной с точкой, близкой к одному из кадров.
Более глубокий анализ, без сомнения, показал бы нам, что эта непрерывность визуального пространства и его два измерения суть не более чем иллюзия; этот анализ еще более отдалил бы визуальное пространство от геометрического. Но мы ограничимся здесь только этим замечанием, следствия из которого были достаточно рассмотрены в главе II.
Однако зрение позволяет нам оценивать расстояния и, следовательно, воспринимать третье измерение. Но всякий знает, что это восприятие третьего измерения сводится к ощущению усилия, сопровождающему аккомодацию, которую надо выполнить, и к ощущению, сопровождающему то схождение обеих глазных осей, которое необходимо для отчетливого восприятия предмета.
Мы имеем здесь мускульные ощущения, совершенно отличные от ощущений зрительных, которые дали нам познание первых двух измерений. Таким образом, третье измерение выступит перед нами не в той же роли, какую играют два других. А следовательно, то, что можно назвать полным визуальным пространством, не есть пространство изотропное.
Правда, оно имеет как раз три измерения, т. е. элементы наших зрительных ощущений (по крайней мере те из них, которые, слагаясь, образуют представление протяженности) будут вполне определены, когда известны три из них; выражаясь математическим языком, они будут функциями трех независимых переменных.
Но исследуем предмет несколько ближе. Третье измерение открывается нам двумя различными способами: благодаря усилию при аккомодации и вследствие схождения глазных осей.
Эти два рода показаний, без сомнения, всегда согласованы друг с другом. Между ними существует постоянное соотношение; выражаясь математически, две переменные, измеряющие оба типа мускульного ощущения, не выступают перед нами в качестве независимых, или еще, – чтобы не прибегать к математическим понятиям достаточно высокой сложности, – мы можем снова воспользоваться языком предыдущей главы и выразить тот же факт следующим образом: если два ощущения схождения осей A и В неразличимы, то и два соответственно сопровождающих их ощущения аккомодации А’ и В’ будут также неразличимы.
Но такое соотношение ощущений – это, так сказать, опытный факт; ничто не мешает a priori допустить обратное, и если окажется, что это обратное действительно имеет место, если эти два типа мускульных ощущений изменяются независимо один от другого, то мы должны будем ввести новую независимую переменную, и «полное визуальное пространство» выступит перед нами как физическая непрерывность четырех измерений.
Я даже прибавлю, что это представляет собою факт внешнего опыта. Ничто не мешает предположить, что существо, имеющее ум, подобный нашему, и такие же органы чувств, как и мы, помещено в мире, куда свет достигает, только пройдя через преломляющие среды сложной формы. Тогда два показания, служащие нам для оценки расстояний, перестали бы быть связанными постоянным соотношением. Существо, которое получило бы в подобном мире воспитание своих чувств, без сомнения, приписало бы полному визуальному пространству четыре измерения.
Пространство тактильное и пространство моторное. «Тактильное пространство» еще более сложно, чем визуальное, и еще более, чем оно, удаляется от пространства геометрического. Бесполезно было бы повторять для осязания анализ, проведенный мною относительно зрения.
Но вне данных зрения и осязания существуют другие ощущения, которые так же, как и эти ощущения, и даже более способствуют образованию понятия пространства. Это – те всем известные ощущения, которыми сопровождаются все наши движения и которые обыкновенно называются мускульными.
Соответствующий им кадр (le cadre) образует то, что можно назвать моторным пространством.
Каждый мускул дает происхождение особому ощущению, способному делаться больше или меньше, так что совокупность наших мускульных ощущений будет зависеть от стольких переменных, сколько у нас мускулов. С этой точки зрения моторное пространство имело бы столько измерений, сколько мы имеем мускулов.
Я знаю, мне тотчас скажут, что если мускульные ощущения способствуют образованию понятия пространства, то это потому, что мы имеем чувство направления каждого движения, и оно является составной частью ощущения. Если бы это было так, если бы мускульное ощущение не могло зародиться иначе, как сопутствуемое геометрическим чувством направления, то геометрическое пространство было бы формой, присущей нашей способности к ощущению. Но когда я анализирую свои ощущения, я этого совершенно не замечаю. Я вижу, что ощущения, соответствующие движениям того же направления, связаны в моем уме простой ассоциацией идей. К этой ассоциации идей и сводится то, что мы называем «чувством направления». Следовательно, этого чувства нельзя было бы найти в единичном ощущении.
Эта ассоциация крайне сложна, так как сокращение того же мускула может отвечать, смотря по положению членов, движениям самых различных направлений.
Она, кроме того, очевидно, является приобретенной; как все ассоциации идей, она есть результат привычки; эта привычка сама вытекает из крайне многочисленных опытов; не подлежит никакому сомнению, что если бы воспитание наших чувств происходило в иной среде, где мы получали иные впечатления, то возникли бы иные привычки, и наши мускульные ощущения были бы ассоциированы по иным законам.
Характерные черты пространства представлений. Таким образом, пространство представлений в своих трех формах – визуального, тактильного и моторного пространства – существенно отличается от геометрического пространства.
Оно ни однородно, ни изотропно; нельзя даже сказать, что оно имеет три измерения.
Часто говорят, что мы «проектируем» в геометрическое пространство предметы наших внешних восприятий, что мы «локализуем» их. Имеет ли это смысл и какой? Должно ли это обозначать, что мы представляем себе внешние предметы в геометрическом пространстве?
Наши представления суть только воспроизведение наших ощущений, поэтому они могут разместиться только в том же кадре, в каком и последние, т. е. в пространстве представлений.
Нам так же невозможно представить себе внешние тела в геометрическом пространстве, как невозможно художнику рисовать на плоской картине предметы с их тремя измерениями.
Пространство представлений есть только образ геометрического пространства – образ, видоизмененный некоторым родом перспективы; мы не можем представить себе предметы иначе, как подчиняя их законам этой перспективы.
Мы не представляем себе, следовательно, внешних тел в геометрическом пространстве, но мы рассуждаем об этих телах, как если бы они были помещены в геометрическом пространстве.
С другой стороны, когда говорят, что мы «локализуем» данный предмет в данной точке пространства, что хотят этим сказать?
Это просто означает, что мы представляем себе движения, которые надо совершить, чтобы достигнуть этого предмета.
И пусть не говорят, что для того, чтобы представить себе эти движения, их надо проектировать сначала в пространство и что понятие пространства должно, следовательно, существовать раньше.
Когда я говорю, что мы представляем себе эти движения, я хочу сказать только, что мы представляем себе мускульные ощущения, которые сопровождают их и которые вовсе не имеют геометрического характера, а следовательно, отнюдь не предполагают предсуществования понятия пространства.
Изменения состояния и изменения положения. Но скажут, если идея геометрического пространства не присуща нашему уму и, с другой стороны, если никакое из наших ощущений не может нам доставить ее, то как она могла возникнуть?
Это – тема нашего ближайшего исследования. Оно потребует у нас некоторого времени; но я могу резюмировать в нескольких словах конечную цель рассуждения, которое мне предстоит развить.
Никакое из наших ощущений, взятое в отдельности, не могло бы привести нас к идее пространства; мы пришли к ней, только изучая законы, по которым эти ощущения следуют друг за другом. Мы видим прежде всего, что наши впечатления подвержены изменению; но между изменениями, которые мы констатируем, мы скоро бываем вынуждены делать различие.
Мы говорим, или что некоторые предметы, вызывающие эти впечатления, изменили свое состояние, или что они изменили свое положение – что они просто переместились.
Меняет ли предмет свое состояние или только положение, это передается нам всегда одним и тем же способом: изменением во всем составе впечатлений.
Каким же образом мы могли прийти к различию обоих изменений? Если произошло только изменение положения, то мы можем восстановить прежнюю совокупность впечатлений, совершая движения, ставящие нас в то же относительное положение к подвижному предмету. Мы компенсируем таким образом происшедшее изменение, восстанавливая начальное состояние обратным изменением.
Так, если речь идет о зрении и если предмет перемещается перед нашими глазами, мы можем за ним «следить глазами» и удерживать его изображение в той же точке сетчатки посредством соответственных движений глазного яблока.
Эти движения мы сознаем, так как они являются волевыми и сопровождаются мускульными ощущениями; но это не значит, что мы представляем их происходящими в геометрическом пространстве.
Именно этим характеризуется изменение положения, и оно отличается от изменения состояния тем, что всегда может быть компенсировано указанным способом.
Следовательно, может случиться, что мы переходим от системы впечатлений А к системе В двумя различными способами: 1) непроизвольно и без каких-либо мускульных ощущений – когда перемещается предмет; 2) произвольно и при наличии мускульных ощущений – когда предмет неподвижен, но перемещаемся мы таким образом, что предмет имеет по отношению к нам относительное движение.
Если дело происходит указанным образом, то переход от системы впечатлений А к системе В есть только изменение положения.
Отсюда следует, что зрение и осязание не могли бы нам дать понятие пространства без помощи «мускульного чувства».
Это понятие не могло бы образоваться не только из единичного ощущения, но даже из ряда ощущений; кроме того, существо неподвижное никогда не могло бы приобрести его, так как, если бы оно не имело возможности компенсировать своими движениями эффектов, зависящих от изменений положения внешних предметов, оно не имело бы никакого основания отличать их от изменений состояния. Оно не могло бы также приобрести это понятие, если бы движения его не были произвольными или если бы они не сопровождались некоторыми ощущениями.
Условия компенсации. Каким образом возможно явление такого рода, что два изменения, не зависящие друг от друга, взаимно компенсируются?
Ум, знакомый уже с геометрией, рассуждал бы так. Для того чтобы произошла компенсация, очевидно, нужно, чтобы различные части внешнего предмета, с одной стороны, и различные органы наших чувств, с другой, приходили после двойного изменения опять в то же относительное положение. А для этого надо, чтобы различные части внешнего предмета равным образом сохранили друг к другу то же самое относительное положение и чтобы то же имело место для взаимного расположения различных частей нашего тела.
Другими словами, при первом изменении внешний предмет должен перемещаться как неизменное твердое тело; то же самое должно произойти с системой нашего тела при втором изменении, компенсирующем первое.
При этих условиях компенсация может произойти. Но мы, не будучи еще знакомы с геометрией, – потому что у нас еще не образовалось понятие пространства, – не можем рассуждать таким образом; мы не можем предвидеть a priori, возможна ли компенсация. Но опыт учит нас, что она иногда имеет место, и это – тот опытный факт, из которого мы исходим для различения изменений состояния от изменений положения.
Твердые тела и геометрия. Среди окружающих нас предметов есть такие, которые часто испытывают перемещения, способные быть компенсированными соответственным (коррелятивным) движением нашего собственного тела. Это – тела твердые.
Другие предметы, форма которых способна изменяться, испытывают подобные перемещения (изменения положения без изменения формы) только в исключительных случаях. Когда тело перемещается, изменяя форму, мы уже не можем соответственными движениями привести органы наших чувств в то же относительное положение к этому телу; следовательно, мы более не в состоянии восстановить начальную совокупность впечатлений.
Только позднее и вследствие новых опытов мы научаемся разлагать тела переменной формы на меньшие элементы такого рода, что каждый из них перемещается почти по тем же законам, что и твердые тела. Мы таким образом отличаем «деформации» от других изменений состояния; при таких деформациях каждый элемент испытывает простое изменение положения, которое может быть компенсировано, но изменение, испытываемое всей совокупностью элементов, более глубоко и уже не способно компенсироваться коррелятивным движением[5].
Подобное понятие, будучи уже очень сложным, могло явиться только относительно поздно; кроме того, оно не могло бы зародиться, если бы наблюдение твердых тел уже не научило нас отличать изменения положения.
Следовательно, если бы не было твердых тел в природе, не было бы и геометрии.
Другое замечание также заслуживает того, чтобы на нем остановиться. Вообразим твердое тело, занимающее сначала положение α и затем переходящее в положение β; в первом своем положении оно произведет на нас систему впечатлений А и во втором – систему впечатлений В. Пусть имеется теперь второе твердое тело, качественно вполне отличное от первого, например, иного цвета. Предположим еще, что оно переходит от положения α’, в котором оно производит на нас систему впечатлений А’, к положению β’, в котором оно вызывает в нас систему впечатлений В’.
Вообще, ни система А не будет иметь ничего общего с системой А’, ни система В с системой В’. Переход от системы А к системе В и переход от системы А’ к системе В’ суть, следовательно, два изменения, которые сами по себе, вообще говоря, ничего общего не имеют. Между тем и то и другое изменение мы рассматриваем как перемещения; более того, мы рассматриваем их как то же самое перемещение. Каким образом это происходит?
Это – просто потому, что и то и другое перемещение может быть компенсировано одним и тем же коррелятивным движением нашего тела.
Следовательно, не что иное, как «коррелятивное движение», составляет единственную связь между двумя явлениями, которые иначе мы никогда и не подумали бы сближать.
С другой стороны, наше тело, благодаря огромному числу его сочленений и мускулов, может предпринимать множество различных движений; но не все они способны «компенсировать» изменение внешних предметов; к этому способны только те, при которых или все наше тело, или по крайней мере те из органов наших чувств, которых касается дело, перемещаются как целое, т. е. не изменяя относительных положений, – подобно твердому телу.
Итак.
Мы должны прежде всего различать две категории явлений. Одни, непроизвольные, не сопровождаемые мускульными ощущениями, приписываются нами внешним предметам; это суть внешние изменения. Другие, противоположного характера, которые мы приписываем движениям нашего собственного тела, суть изменения внутренние.
Мы замечаем, что известные изменения каждой из этих категорий могут быть компенсированы коррелятивным изменением другой категории.
Среди внешних изменений мы отличаем те, которые имеют коррелятивное изменение в другой категории; мы называем их перемещениями; среди изменений внутренних мы также отличаем те, которые имеют коррелятивное изменение в первой категории. Таким образом, благодаря этой взаимности определяется особый класс явлений, которые мы называем перемещениями.
Законы этих явлений и составляют предмет геометрии.
Закон однородности. Первый из этих законов есть закон однородности.
Предположим, что благодаря внешнему изменению α мы пришли от системы впечатлений А к системе В; потом это изменение α компенсировано соответственным волевым движением β так, что мы пришли опять к системе А.
Предположим теперь, что другое внешнее изменение α’ снова приводит нас от системы А к системе В.
Опыт учит нас тогда, что это изменение α’, как и α, способно компенсироваться коррелятивным волевым движением β’ и что это движение β’ соответствует тем же мускульным ощущениям, что и движение β, которое компенсировало α.
Именно этот факт и выражается обыкновенно словами: пространство однородно и изотропно.
Можно сказать также, что движение, происшедшее один раз, может повториться второй раз, третий раз и т. д., не меняя своих свойств.
В первой главе, где мы изучали природу математического умозаключения, мы видели, какое важное значение следует приписать возможности повторять неопределенное число раз одну и ту же операцию.
Именно от этого повторения математическое умозаключение приобретает свою силу; и если эта сила распространяется также на геометрические факты, то это – благодаря закону однородности.
Для полноты изложения надо было бы присоединить к закону однородности множество других аналогичных законов; я не хочу входить по поводу их в подробности, но математики резюмируют их одним словом, говоря, что перемещения образуют «группу».
Неевклидов мир. Если бы геометрическое пространство выступало в качестве кадра для каждого нашего представления, взятого в отдельности, то было бы невозможно представить себе образ, отделенный от этого кадра, и мы не могли бы ничего изменить в нашей геометрии.
На деле это не так: геометрия есть только резюме законов, по которым эти образы следуют друг за другом. В таком случае ничто не мешает нам вообразить себе ряд представлений, во всем подобных нашим обычным представлениям, но следующих друг за другом по законам, отличным от тех, к которым мы привыкли.
Поэтому понятно, что существа, умственное воспитание которых проходило бы в такой среде, где эти законы не выполняются, могли бы иметь геометрию, в значительной степени отличную от нашей.
Вообразим, например, мир, заключенный внутри большой сферы и подчиненный следующим законам. Температура здесь не равномерна; она имеет наибольшее значение в центре и понижается по мере удаления от него, делаясь равной абсолютному нулю на шаровой поверхности, которая является границей этого мира.
Я определю в точности даже закон, по которому изменяется эта температура. Пусть R будет радиус граничной поверхности, r – расстояние рассматриваемой точки от центра сферы. Абсолютная температура пусть будет пропорциональна R2 − r2.
Я предположу далее, что в этом мире все тела имеют один и тот же коэффициент расширения, именно такой, что длина какой-нибудь линейки пропорциональна абсолютной температуре.
Наконец, я предположу, что предмет, перенесенный из одной точки в другую, где температура иная, тотчас же приходит в состояние теплового равновесия со своей новой средой. В этих допущениях нет ничего ни противоречивого, ни немыслимого.
В таком случае движущийся предмет будет все уменьшаться по мере приближения к граничной сфере. Теперь заметим, что хотя этот мир ограничен с точки зрения нашей обычной геометрии, тем не менее он будет казаться бесконечным для его обитателей.
В самом деле, когда они пожелали бы приблизиться к граничной сфере, они охлаждались бы и становились бы все меньше и меньше. Поэтому шаги их постоянно укорачивались бы, и они никогда не могли бы достигнуть граничной сферы.
Если для нас геометрия есть не что иное, как изучение законов, по которым движутся неизменные твердые тела, то для этих воображаемых существ она была бы изучением законов, по которым движутся твердые тела, изменяющиеся вследствие тех различий в температуре, о которых я только что говорил.
Без сомнения, и в нашем мире реальные твердые тела также испытывают изменения формы и объема вследствие нагревания и охлаждения. Но устанавливая основы геометрии, мы пренебрегаем этими изменениями, так как, помимо того, что они крайне незначительны, они еще беспорядочны и, следовательно, кажутся нам случайными.
В воображаемом нами мире это было бы уже не так; эти изменения следовали бы правильным и очень простым законам. С другой стороны, различные твердые составные части тела обитателей этого мира испытывали бы такие же изменения формы и объема.
Я сделаю еще другое допущение. Я предположу, что свет здесь проходит через среды различной преломляющей способности, именно такие, что показатель преломления обратно пропорционален R2 − r2. Легко видеть, что в этих условиях световые лучи были бы не прямолинейными, а круговыми.
Чтобы оправдать все предыдущее, мне остается показать, что известные изменения, происходящие в положении внешних предметов, могут быть компенсированы коррелятивными движениями чувствующих существ, которые заселяют этот воображаемый мир; таким образом, может быть восстановлен первоначальный комплекс впечатлений, испытываемых этими существами.
Предположим в самом деле, что предмет перемещается, деформируясь: не как неизменное твердое тело, но как твердое тело, испытывающее неравномерные расширения, в точности соответствующие допущенному выше закону изменения температур. Для краткости я позволю себе называть подобное движение неевклидовым перемещением.
Если по соседству находится чувствующее существо, его впечатления будут изменены благодаря перемещению предмета, но оно будет в состоянии восстановить их в прежнем виде, передвигаясь само надлежащим образом. Достаточно, чтобы в результате система, состоящая из предмета и чувствующего существа, рассматриваемая как одно тело, испытывала одно из тех особых перемещений, которые я назвал неевклидовыми. Это возможно, если допустить, что члены этих существ расширяются по тому же закону, что и другие тела заселяемого ими мира.
Хотя с точки зрения нашей обычной геометрии тела окажутся после такого перемещения деформированными и различные их части отнюдь не возвратятся в прежнее относительное расположение, но мы увидим, что впечатления чувствующего существа окажутся теми же.
В самом деле, если взаимные расстояния различных частей и могли измениться, тем не менее части, бывшие вначале в соприкосновении, опять будут в соприкосновении. Следовательно, осязательные впечатления не изменятся. С другой стороны, если учесть гипотезу о преломлении и кривизне световых лучей, мы убедимся, что и зрительные впечатления останутся прежними.
Итак, наши воображаемые существа должны будут, как и мы, классифицировать наблюдаемые ими явления и выделить из них «изменения положения», которые можно компенсировать соответственным волевым движением.
Если они создадут геометрию, то она не будет, подобно нашей, изучением движений наших неизменных твердых тел; это будет наука об изменениях положения, изменениях, которые они выделят в особую группу и которые будут представлять не что иное, как «неевклидовы перемещения». Это будет неевклидова геометрия.
Таким образом, такие же существа, как мы, воспитание которых происходило бы в подобном мире, имели бы геометрию, отличную от нашей.
Мир четырех измерений. Так же, как неевклидов мир, можно представить себе мир четырех измерений.
Чувство зрения, даже при единственном глазе, в соединении с мускульными ощущениями, сопровождающими движения глазного яблока, могло бы оказаться достаточным для познания пространства трех измерений.
Образы внешних предметов рисуются на сетчатке, которая является картиной двух измерений; это – перспективные изображения.
Но так как эти предметы, а также и наш глаз, подвижны, то мы последовательно видим различные перспективные изображения одного и того же тела, схваченные с нескольких различных точек зрения.
В то же время мы убеждаемся, что переход от одного перспективного изображения к другому часто сопровождается мускульными ощущениями. Если переходы от перспективы А к перспективе В и от перспективы А’ к перспективе В’ сопровождаются одними и теми же мускульными ощущениями, то мы сближаем их между собой как операции одной и той же природы.
Изучая затем законы, по которым сочетаются между собой эти операции, мы убеждаемся в том, что они образуют группу, которая имеет такую же структуру, как и группа движений неизменных твердых тел.
Но мы видели, что именно из свойств этой группы мы извлекли понятие геометрического пространства и пространства трех измерений.
Мы понимаем, таким образом, как идея пространства трех измерений могла возникнуть из наблюдения этих перспективных изображений, хотя каждое из них имеет только два измерения; дело в том, что они следуют друг за другом по определенным законам.
Теперь таким же образом, как на плоскости можно сделать перспективное изображение фигуры трех измерений, можно сделать изображение фигуры четырех измерений на экране трех (или двух) измерений. Для геометра эта задача в высшей степени простая.
Можно также получить несколько перспективных изображений одной и той же фигуры с нескольких различных точек зрения. Мы можем легко представить себе эти перспективные изображения, так как они имеют только три измерения.
Вообразим, что различные перспективные изображения одного и того же предмета следуют одно за другим и что переход от одного к другому сопровождается мускульными ощущениями.
Ясно, что два из таких переходов будут рассматриваться нами как две операции одной и той же природы, если они будут связаны с такими же мускульными ощущениями.
Теперь ничто не мешает нам вообразить себе, что эти операции сочетаются по любому заданному закону, например, так, что образуют группу такой же структуры, как и группа движений неизменного твердого тела четырех измерений.
В таком представлении нет ничего невозможного, и однако это как раз такие же ощущения, которые испытывало бы существо, обладающее сетчаткой двух измерений и возможностью перемещаться в пространстве четырех измерений.
В этом именно смысле допустимо говорить о возможности представить себе четвертое измерение.
Было бы невозможно представить себе этот вид пространства Гильберта, о котором мы говорили в предыдущей главе, так как это пространство уже не является непрерывностью второго порядка. Следовательно, оно слишком глубоко отличается от нашего обычного пространства.
Выводы. Мы видим, что опыт играет необходимую роль в происхождении геометрии; но было бы ошибкой заключить, что геометрия – хотя бы отчасти – является экспериментальной наукой.
Если бы она была экспериментальной наукой, она имела бы только временное, приближенное – и весьма грубо приближенное! – значение. Она была бы только наукой о движении твердых тел. Но на самом деле она не занимается реальными твердыми телами; она имеет своим предметом некие идеальные тела, абсолютно неизменные, которые являются только упрощенным и очень отдаленным отображением реальных тел.
Понятие об этих идеальных телах целиком извлечено нами из недр нашего духа, и опыт представляет только повод, побуждающий нас его использовать.
Предмет геометрии составляет изучение лишь частной «группы» перемещений, но общее понятие группы существует раньше в нашем уме (dans notre esprit), по крайней мере в виде возможности. Оно присуще нам не как форма нашего восприятия, а как форма нашей способности суждений. Надо только среди всех возможных групп выбрать ту, которая служила бы, так сказать, эталоном, с которым мы соотносили бы реальные явления. Опыт направляет нас при этом выборе, но не делает его для нас обязательным; он показывает нам не то, какая геометрия наиболее правильна, а то, какая наиболее удобна.
Читатель заметит, что я был бы в состоянии описывать фантастические миры, которые я представлял себе выше, не переставая пользоваться языком обыкновенной геометрии.
И в самом деле, мы не изменили бы его, даже если бы были перенесены в такой мир.
Существа, получившие там свое развитие, нашли бы, без сомнения, более удобным создать геометрию, отличную от нашей, которая лучше соответствовала бы их впечатлениям. Что же касается нас, то, наверное, даже при наличии тех же впечатлений мы нашли бы более удобным не изменять наших привычек.
5
То есть коррелятивным движением нашего собственного тела (см. выше). – Прим. ред.