Читать книгу Quinoa - Atul Bhargava - Страница 16
1.3.4 Medicinal importance
ОглавлениеThe use of quinoa for medicinal purposes has also been reported (Mujica, 1994). The plant is reportedly used in inflammation, as an analgesic and as a disinfectant of the urinary tract. It is also used in fractures and internal haemorrhaging and as an insect repellent (Mujica, 1994). The presence of glycine betaine, trigonelline and their derivatives has been reported in the plant (Jancurova et al., 2009). In humans, glycine betaine can be readily absorbed through dietary intake or endogenously synthesized in the liver through choline catabolism. The concentration of glycine betaine in human blood plasma is highly regulated. Its concentrations are lower in patients with renal disease, and its urinary excretion is elevated in patients with diabetes mellitus (Dini et al., 2006). Glycine betaine intake can lower plasma homocysteine levels in patients suffering from homocystinuria, and in chronic renal failure patients with hyperhomocysteinemia, as well as in healthy subjects (Tang et al., 2002; Jancurova et al., 2009). Recently, the cell wall polysaccharides of quinoa seeds (arabinan and arabinan-rich pectic polysaccharides) showed gastroprotective activity on ethanol-induced acute gastric lesions in rats (Cordeiro et al., 2012). These reports can open new avenues for use of quinoa as a medicinal crop.
Dietary flavonoids are thought to have health benefits, possibly due to antioxidant and anti-inflammatory properties (Hirose et al., 2010). Quinoa seeds are the most effective foodstuff as a source of flavonoids among cereals and pseudo-cereals. Recent studies have identified large amounts of flavonoid conjugates in quinoa seeds, such as kaempferol and quercetin oligomeric glycosides (Zhu et al., 2001; Dini et al., 2004; Hirose et al., 2010). Flavonoids, one of the typical polyphenols in vegetables, fruits and tea, can prevent degenerative diseases such as coronary heart disease (Arts and Hollman, 2005), atherosclerosis (Kurosawa et al., 2005), cancers (Rice-Evans and Packer, 1998), diabetes and Alzheimer’s disease (Youdim et al., 2004), through antioxidative action and/or the modulation of several protein functions (Hirose et al., 2010). Quinoa also contains appreciable amount of vitamin E (Repo-Carrasco et al., 2003). This is important since this vitamin acts as an antioxidant at the cell membrane level, protecting the fatty acids of the cell membranes against damage caused by free radicals.
The highly nutritious quinoa flour could be used to supplement protein-deficient wheat flour, commonly used for human consumption, in regions where protein deficiency occurs. Quinoa can be recommended for maturity-onset diabetes patients because of its low fructose and glucose. Quinoa flour can be used as a substitute for wheat flour in the production of bread for celiac consumers, with substitutions in small amounts having shown a positive effect on the quality of the breads (Park et al., 2005). One study showed increase in the level of insulin-like growth factor-1 (IGF-1) in the plasma of children who consumed a supplementary portion of an infant food prepared by drum-drying a pre-cooked slurry of quinoa flour (Ruales et al., 2002).