Читать книгу VCSEL Industry - Babu Dayal Padullaparthi - Страница 52

References

Оглавление

1 1 T. H. Maiman, “Stimulated optical radiation in ruby,” Nature, 187 4736, pp. 493–494 (1960).

2 2 R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys and R. O. Carlson, “Coherent light emission from GaAs junctions,” Phys. Rev. Lett., Vol. 9, No. 9, pp. 366–368 (1962).

3 3 T. M. Quist, R. H. Rediker, R. J. Keyes, W. E. Krag, B. Lax, A. L. McWhorter and H. J. Zeigler, “Semiconductor maser of GaAs,” Appl. Phys. Lett., Vol. 1, No. 4, pp. 91–92 (1962).

4 4 M. I. Nathan, W. P. Dumke, G. Burns, F. H. DillJr. and G. Lasher, “Stimulated emission of radiation from GaAs p‐n junctions,” Appl. Phys. Lett. Vol. 1, No. 3, pp. 62–64 (1962).

5 5 N. HolonyakJr. and S. F. Bevacqua, “Coherent (visible) light emission from Ga(As1‐xPx) junctions,” Appl. Phys. Lett., Vol. 1, No. 4, pp. 82–83 (1962).

6 6 I. Hayashi, P.B. Panish, P.W. Foy and S. Sumski, “Junction lasers which operate continuously at room temperature,” Appl. Phys. Lett., Vol. 17, pp. 109–111 (1970).

7 7 Zh. I. Alferov, V. M. Andreev, E. L. Portnoi and M. K. Trukan, “AlAs‐GaAs heterojunction injection lasers with a low room‐temperature threshold,” Fiz. Tekh. Poluprovodn., Vol. 3, pp. 1328–1332 (1969); Sov. Phys. Semicond., Vol. 3, pp. 1107–1110 (1970).

8 8 K. Iga and G. Hatakoshi, “Treasure Microbox of Optoelectronics,” Adcom‐Media Co. Ltd. Tokyo, April 25, 2020. (PDF Japanese language version).

9 9 H. Kroemer, “A proposed class of heterojunction injection lasers,” Proc. IEEE, Vol. 51, No. 12, pp. 1782–1783 (1963) H. Kroemer: “Solid state radiation emitters,” US Patent 3309553 (Application date: Aug. 16, 1963).

10 10 Y. Suematsu and K. Iga, “Introduction of Optical Fiber Communication,” John Wiley and sons, 1976.

11 11 H. C. Casey and M. B. Panish, Heterostructure Lasers, Academic Press, New York (1978).

12 12 A. Yariv: Optical Electronics, 1991.

13 13 L. A. Coldren, S. Corzine, and M. L. Masanovic, “Diode Lasers and Integrated Optics,” Wiley, 1994.

14 14 S. L. Chuang, “Physics of Optoelectronic Devices,” John Wiley & Sons, New York, 1995.

15 15 J.P. van der Ziel, R. Dingle, R.C. Miller, W. Wiegman and W.A. NordlandJr., “Laser oscillation from quantum states, in very thin GaAs‐Al0.2Ga0.8As multilayer structures,” Appl. Phys. Lett., Vol. 26, No. 8, pp. 463–465, 1975.

16 16 Y. Arakawa and A. Yariv, “Theory of gain, modulation response and spectral linewidth in AlGaAs quantum well lasers,” IEEE J. Quantum Electron., Vol. QE‐21, No. 10, pp. 1666–1674, Oct. 1985.

17 17 M. Asada, Y. Miyamoto and Y. Suematsu, “Gain and the threshold of three‐dimensional quantum‐box lasers,” IEEE J. Quantum Electron., Vol. QE‐22, pp. 1915–1921, 1986.

18 18 K. Iga, “Fundamentals of Laser Optics,” Plenum, p. 173, (1994).

19 19 M. Asada and Y. Suematsu, IEEE J. QE, vol. QE‐21, p. 434(1985).

20 20 H. Kogelnik and C.V. Shank, “Coupled wave theory of distributed feedback lasers,” J. Appl. Phys., Vol. 43, No. 5, pp. 2327–2335, May 1972.

21 21 Y. Suematsu and K. Hayashi, “General analysis of distributed Bragg reflector and laser resonator using it,” National Conv. Inst. Electron. Comm. Eng, 1200, p. 1203, (July 25–27, 1974).

22 22 W. Tsang and S. Wang, “GaAs‐Ga1−xAlxAs double‐heterostructure injection lasers with distributed Bragg reflectors,” 9th IQEC, p. 38 June 1976.

23 23 K. Utaka, Y. Suematsu, K. Kobayashi and H. Kawanishi, “GaInAsP/InP integrated twin‐guide lasers with first‐order distributed Bragg reflectors at 1.3μm wavelength,” Jpn. J. Appl. Phys., Vol. 19, No. 2, pp. L137–L140, Feb. 1980.

24 24 Y. Suematsu, “Dynamic single mode lasers,” J. Lightwave Technol., vol. 32, no. 6, pp. 1144–1158, March 2014.

25 25 K. Iga, Research Notebook, March 22, 1977.

26 26 K. Iga, T. Kambayashi, C. Kitahara, “Surface‐emitting GaInAsP / InP laser (I),” 25th Joint Conference on Applied Physics (at Musashi Institute of Technology), 27‐p‐11, p. 63, March 27, 1978.

27 27 K. Iga, Y. Suematsu, K. Kishino and H. Soda, “Surface emitting semiconductor laser,” Japan. Patent, Hei 1‐56547, Jan. (1980).

28 28 K. Iga and G. Hatakoshi, “The Principle and Application Systems of Vertical Cavity Surface Emitting Laser,” Adcom‐Media Co. Ltd. Tokyo, Sept. 25, 2020. (PDF Japanese language version)

29 29 H. Soda, K. Iga, C. Kitahara, and Y. Suematsu, “GaInAsP/InP surface emitting injection lasers,” Jpn. J. Appl. Phys., vol. 18, no. 12, pp. 2329–2330 (1979).

30 30 Y. Motegi, H. Soda, and K. Iga, “Surface emitting GaInAsP/InP injection laser with short cavity length,” Electron. Lett., Vol. 18, No. 11, pp. 461–463 (1982).

31 31 K. Iga, S. Kinoshita, and F. Koyama, “Microcavity GaAlAs/GaAs surface‐emitting laser with Ith=6 mA,” Electron. Lett., vol. 23, no. 3, pp. 134–136, Jan. (1987).

32 32 F. Koyama, S. Kinoshita, and K. Iga, “Room temperature cw operation of GaAs vertical cavity surface emitting laser,” Trans. IEICE, vol. E71, No. 11, pp. 1089–1090 (1988).

33 33 F. Koyama, S. Kinoshita, and K. Iga: “Room‐temperature continuous wave lasing characteristics of GaAs vertical cavity surface‐emitting laser,” Appl. Phys. Lett. vol. 55, no. 3, pp. 221–222 (1989).

34 34 T. Sakaguchi, F. Koyama, and K. Iga, “Vertical cavity surface‐emitting laser with an AlGaAs/AlAs Bragg reflector,” Electron. Lett., vol. 24, no. 15, pp. 928–929, July (1988).

35 35 H. Uenohara, F. Koyama, and K. Iga: “Application of the multiquantum well (MQW) to a surface emitting laser,” Jpn. J. Appl. Phys., vol. 28, no. 4, pp. 740–741, April (1989).

36 36 J. L. Jewell, S. L. McCall, A. Scherer, H. H. Houh, N. A. Whitaker, A. C. Gossard, and J. H. English, “Transverse modes, waveguide dispersion and 30 ps recovery in submicron GaAs/AlAs micro‐resonators,” Appl. Phys. Lett. vol. 55, no. 1, pp. 22–24 (1989).

37 37 Y. H. Lee, J. L. Jewell, A. Scherer, S. L. McCall, J. P. Harbison, and L. T. Florez: “Room‐ temperature continuous‐wave vertical‐cavity single‐quantum‐well micro‐laser diodes,” Electron. Lett., vol. 25, no. 20, pp. 1377–1378 (1989).

38 38 S. W. Corzine, R. S. Geels, R. H. Yan, J. W. Scott, and L. A. Coldren, “Efficient, narrow‐linewidth distributed‐Bragg reflector surface emitting laser with periodic gain,” IEEE Photon. Technol. Lett., vol. 1, no. 3, pp. 52–54 (1989).

39 39 R. S. Geels, and L. A. Coldren: “Sub‐milliamp threshold vertical‐cavity laser diodes,” Appl. Phys. Lett., Vol. 57, pp. 1605–1607, (1991)

40 40 R. A. Morgan, “High‐performance, producible vertical‐cavity lasers for optical interconnect,” in Current Trends in Vertical Cavity Surface Emitting Lasers, T. P. Lee Ed., World Scientific, pp. 65–95 (1995).

41 41 T. Wipiejewski, K. Panzlaf, E. Zeeb, and K. J. Ebeling, “Sub‐milliamp vertical cavity laser diode structure with 2.2 nm continuous tuning,” 18th European Conf. Opt. Comm. '1992, PD II‐4, Sept. 1992.

42 42 Y. Hayashi, T. Mukaihara, N. Hatori, Ohnoki, A. Matsutani, F. Koyama, and K. Iga, “Record low‐threshold index‐guided InGaAs/GaAlAs vertical‐cavity surface‐emitting laser with a native oxide confinement structure,” Electron. Lett., vol. 31, no. 7, pp. 560–561, Mar. (1995).

43 43 J. M. Dallesasse, N. Holonyak Jr., A. R. Sugg, T. A. Richard, and N. El‐Zein: “Hydrolyzation‐oxidation of AlxGa1‐xAs‐AlAs‐GaAs quantum well heterostructures and superlattices,” Appl. Phys. Lett., vol. 57, no. 26, pp. 2844–2846 (1990).

44 44 M. H. Crawford, K. D. Choquette, R. J. Hickman, and K. M. Geib, “Performances of selective oxidized AlGaInP‐based visible VCSELs,” in OSA Trends in Optics and Photonics (Advances in Vertical Cavity Surface Emitting Laser), Ed. C. Chang‐Hasnain, vol. TOPS15, pp. 112–117 (1997).

45 45 N. Yokouchi, T. Miyamoto, T Uchida, Y Inaba, F. Koyama, and K. Iga, “40 Å continuous tuning of a GaInAsP/InP vertical‐cavity surface‐emitting laser using an external mirror,” IEEE Photon. Technol. Lett., vol. 4, no. 7, pp. 701–703, July (1992).

46 46 M. S. Wu, E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang‐Hasnain, “Tunable micromachined vertical cavity surface emitting laser,” Electron. Lett., vol. 31, no. 19, pp. 1671–1672 (1995).

47 47 E. Ho, F. Koyama, and K. Iga: “Effective reflectivity from self‐imaging in a Talbot cavity and its effect on the threshold of a finite 2‐D surface emitting laser array,” Appl. Opt., vol. 29, no. 34, pp. 5080–5085 (1990).

48 48 T. Baba, Y. Yogo, K. Suzuki, F. Koyama, and K. Iga, “Near room temperature continuous wave lasing characteristics of GalnAsP/lnP surface emitting laser,” Electron. Lett., vol. 29, no. 10, pp. 913–914 (1993).

49 49 K. Iga, “Surface emitting laser‐its birth and generation of new optoelectronic fields,” IEEE J. Sel. Top. Quantum Electron., Invited paper, vol. 6, No. 6, pp. 1201–1215, Nov./Dec., 2000.

50 50 E. Towe, R. F. Leheny, and A. Yang, (December 2000). “A historical perspective of the development of the vertical‐cavity surface‐emitting laser“. IEEE J. Sel. Top. Quantum Electron., vol. 6, no. 6, pp. 1458–1464, Nov./Dec., 2000.

51 51 C. J. Chang‐Hasnain, J. P. Harbison, C. E. Zah, M. W. Maeda, L. T. Florez, N. G. Stoffel, and T. P. Lee: “Multiple wavelength tunable surface‐emitting laser arrays,,” IEEE J. Quantum Electron., vol. 27, no. 6, pp. 1368–1376 (1991).

52 52 B. D. Padullaparthi, R. Chen and A. Tan et al., “High Volume Manufacturing of VCSELs for Datacom & Sensing,” Industry Panel Discussions, Th4, pp: 51, International Nano‐Optoelectronics Workshop (i‐NOW) 2018, UC Berkeley, USA.

53 53 K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor laser,” IEEE J. Quantum. Electron., vol. QE‐24, no. 9, pp. 1845–1855, Sept. (1988).

54 54 C. Jung, R. Jäger, M. Grabherr, P. Schnitzer, R. Michalzik, B. Weigl, S. Muller, and K. J. Ebeling, “4.8 mW single mode oxide confined top‐surface emitting vertical‐cavity laser diodes,” Electron. Lett., vol. 33, no. 21, pp. 1790–1791 (1997).

55 55 K. Iga, “Forty years of VCSEL: Invention and innovation,” Jpn. J. Appl. Phys. Vol. 57, No. 8S2, pp. 1–7, Aug. (2018).

56 56 B. D. Padullaparthi, “Impact of ∆neff of 850nm VCSEL cavity on low noise for 100G eSR4 transmission and its potential for ≥400G datacenter optical interconnects,” Proc. SPIE11704 11704–24 (2021) doi:10.1117/12.475724.

57 57 J. A. Tatum and J. K. Guenter, “The VCSELS are coming,” Proc. SPIE 4994, Vertical‐Cavity Surface‐Emitting Lasers VII, 17 June 2003;

58 58 K. Iga, “VCSEL Odyssey,” SPIE No. PM318, September 1, 2020.

VCSEL Industry

Подняться наверх