Читать книгу Ноль: биография опасной идеи - Чарльз Сейфе - Страница 4
Глава 1
Ничего не получится
Жизнь без ноля
ОглавлениеПроблема с нолем заключается в том, что мы не нуждаемся в нем в повседневной жизни. Никто не отправляется на рынок, чтобы купить ноль рыб. В определенной мере это наиболее цивилизованная из основ, и ее использование было навязано нам только потребностями разработанных моделей мышления.
Альфред Норт Уайтхед
Современному человеку трудно представить себе жизнь без ноля, как трудно представить жизнь без чисел 7 или 31. Тем не менее было время, когда ноля не существовало – как не существовало и этих чисел. Дело было еще в доисторические времена, так что палеонтологам пришлось собирать по кусочкам историю рождения математики, изучая осколки камней и кости. По этим фрагментам они узнали, что математики каменного века были более неприхотливы, чем современные. Вместо грифельной доски они использовали… волков.
Ключ к математике каменного века был найден при раскопках в Чехословакии в конце 1930-х годов археологом Карлом Абсаломом. Он нашел волчью кость с серией насечек; кости было тридцать тысяч лет. Никто не знает, использовал ли ее первобытный человек, чтобы сосчитать, сколько он убил оленей, сколько рисунков сделал или сколько дней не мылся, однако совершенно ясно, что древние люди что-то подсчитывали.
Волчья кость была в каменном веке эквивалентом суперкомпьютера. Предки нашего первобытного математика не могли сосчитать даже до двух, а уж ноль им точно не требовался. На самых начальных этапах люди могли различать только «один» и «много». Первобытный человек владел одним копьем или несколькими; он съедал одну убитую ящерицу или многих. Не было никакой возможности показать другие количества между «один» и «много». С течением времени примитивные языки развились достаточно, чтобы различать «один», «два» и «много», а потом и «один», «два», «три» и «много», но названий для бо́льших чисел еще не было. Некоторые языки все еще имеют такое ограничение. Индейцы сирионо в Боливии и бразильские индейцы яномамо не имеют названий для чисел больше трех, вместо этого они говорят «несколько» или «много».
Сама природа чисел такова, что их можно складывать друг с другом, получая новые, так что система не остановилась на трех. Через некоторое время умные члены племени начали нанизывать числа-слова в ряд, чтобы получить бо́льшие числа. Современные языки народностей бакайри и бороро в Бразилии демонстрируют этот процесс в действии. Их система чисел выглядит так: «один», «два», «два и один», «два и два», «два и два и один» и так далее. Эти люди считают двойками. Математики называют такую систему бинарной.
Немногие народы считают двойками, как бакайри и бороро. Старая волчья кость несет на себе более типичную древнюю систему счета. Кость имеет пятьдесят пять маленьких насечек, объединенных в группы по пять; после первых двадцати пяти отметок имеется еще одна насечка. Очень похоже на то, что наш первобытный человек считал пятерками, а потом сгруппировал пятерки по пять. В этом есть здравый смысл. Гораздо быстрее подсчитывать значки, объединенные в группы, чем пересчитывать их по одному. Современные математики сказали бы, что резчик по волчьей кости использовал основанную на цифре 5, или пятеричную, систему счета.
Но почему именно на цифре 5? В конце концов это произвольное решение. Если бы первобытный человек объединил значки в группы по четыре и считал более крупными единицами, равными 16, или в группы по шесть и равными 36, его система счета работала бы также хорошо. Группировка не влияет на число насечек на кости, она отражается только на том, как резчик их объединил. Окончательный ответ был бы получен один и тот же, как бы ни считать значки. Однако наш первобытный человек предпочел считать группами по пять, а не по четыре, и такое предпочтение разделяли люди по всему миру. Природа случайно дала человеку по пять пальцев на каждой руке, и из-за этой случайности пятерка оказалась излюбленной основой системы счета во многих культурах. Древние греки, например, использовали термин «пятерение» для описания процесса подсчета.
Даже в южноамериканских двоичных системах счета лингвисты усматривают начала пятеричной системы. Другое название на языке бороро для числа «два и два и один» – «это моя рука целиком». Ясно, что древние люди предпочитали считать, используя части своего тела, и «пять» (одна рука), «десять» (две руки) и «двадцать» (обе руки и обе ноги) были для этого излюбленными объектами. Английские слова eleven и twelve произошли, вероятно, от one over (ten) и two over (ten), «один сверх (десяти)» и «два сверх (десяти)», как, по-видимому, и русские «одиннадцать» и «двенадцать» произошли от «один над десятью» и «два над десятью». Английские «тринадцать», «четырнадцать», «пятнадцать» и так далее, скорее всего, сокращения фраз «три и десять», «четыре и десять», «пять и десять». Исходя из этого, лингвисты заключают, что «десять» являлось базовой единицей в германских праязыках, от которых произошел английский, поэтому люди использовали основанную на десятке числовую систему. С другой стороны, по-французски «восемьдесят» – это quatre-vingts, то есть «четыре двадцатки», а «девяносто» – quatre-vingt-dix («четыре двадцатки и десять»). Может показаться, что люди, жившие там, где теперь расположена Франция, использовали как основу число 20 – это была двадцатеричная система. Такие числа, как 7 и 31, принадлежат ко всем системам – и пятеричной, и десятеричной, и двадцатеричной. Однако ни одна из них не имела названия для ноля. Такого понятия просто не существовало.
Ведь нет нужды пасти ноль овец или пересчитывать ноль цыплят. Вместо того чтобы сказать: «У нас ноль бананов», торговец скажет: «У нас нет бананов». Не требуется цифры для обозначения отсутствия чего-нибудь, так что никому и не приходило в голову придумывать для нее обозначение. Поэтому люди так долго и обходились без ноля. Он просто не был нужен, а потому не возникал.
На самом деле знание о числах вообще было большим достижением в доисторические времена. Простая способность считать рассматривалась как столь же мистический и сверхъестественный талант, как наложение заклятий или знание имен богов. В египетской «Книге мертвых» говорится, что когда душу умершего расспрашивает Акен, перевозчик, переправляющий души умерших через реку в потусторонний мир, он отказывается брать в свою лодку того, «кто не знает числа своих пальцев». Душа должна пересчитать пальцы, чтобы удовлетворить перевозчика. (А вот греческий перевозчик в царство мертвых хотел получить плату, поэтому под язык мертвому человеку клали монету.)
Хотя умение считать в древнем мире было редкостью, числа и основные правила счета всегда возникали раньше письменности. Когда у ранних цивилизаций появлялась потребность делать на глиняных табличках оттиски тростинкой, высекать знаки на камне или наносить их чернилами на пергамент или папирус, система чисел бывала уже хорошо развитой. Трансформация устной системы счета в письменную была делом простым: людям нужно было только изобрести метод кодирования, чтобы писцы могли сохранять числа в более долговечной форме. (Некоторые общества даже придумали, как это делать, до того, как научились писать. Неграмотные инки, например, использовали «кипу» – связки разноцветных веревочек с узлами, чтобы сохранять результаты подсчетов.)
Первые писцы записывали числа так, как это соответствовало их системе счета, и делали это как можно более точно. Со времен первобытных людей общество развилось; вместо того, чтобы снова и снова наносить группы насечек на кость, писцы изобрели символы для каждого типа групп. При пятеричной системе писец мог одним значком обозначить единицу, другим значком – группу из пяти единиц, третьим – число 25 (пять групп по пять) и так далее.
Именно так поступили египтяне. Более пяти тысяч лет назад, еще до эры пирамид, древние жители Египта придумали систему изображений для своей десятеричной системы, где каждая цифра изображалась рисунком. Одна вертикальная черточка означала единицу, изображение пяточной кости – десять, изогнутый силок – сто, и так далее. Чтобы записать число по такой схеме, писцу нужно было только изобразить группы этих символов. Вместо того чтобы наносить 123 насечки для изображения числа 123, достаточно было изобразить шесть символов: один силок, две пятки и три вертикальных черточки. Таков был типичный способ математических записей в античности. Как и большинство других цивилизаций, Египет не обладал нолем и не нуждался в нем.
Однако древние египтяне были весьма искусными математиками. Они умело вели астрономические наблюдения и следили за временем, а это означало, что им была нужна развитая математика – из-за переменчивой природы календаря.
Создание надежного календаря было проблемой для большинства древних цивилизаций, потому что они обычно начинали с календаря лунного: длительность месяца определялась как промежуток между двумя полнолуниями. Это был естественный выбор: убывание и рост луны на небе трудно не заметить, и это дает удобный способ отмечать периодически повторяющиеся циклы. Однако длительность лунного месяца – между двадцатью девятью и тридцатью днями. Как бы вы их ни располагали, двенадцать лунных месяцев дают 354 дня – примерно на одиннадцать меньше, чем длится солнечный год. Тринадцать лунных месяцев дают девятнадцать лишних дней. Поскольку именно солнечный, а не лунный год определяет время сева и жатвы, сезоны смещаются, если пользоваться неуточненным лунным годом.
Корректировка лунного календаря – дело сложное. Некоторые современные страны, такие как Израиль и Саудовская Аравия, все еще пользуются модифицированным лунным календарем, но шесть тысяч лет назад египтяне пришли к лучшему решению. Они нашли более простой способ и создали календарь, верно указывавший сезоны на протяжении многих лет. Вместо того чтобы следить за течением времени, наблюдая за луной, они использовали солнце, как это делает большинство современных народов.
Египетский календарь состоял из двенадцати месяцев, как и лунный, но каждый месяц длился тридцать дней. (Поскольку они пользовались десятеричной системой, неделя у египтян – декада – длилась десять дней.) В конце года календарь включал пять дополнительных дней, что в сумме давало 365 дней в году. Это предок нашего собственного календаря; египетскую систему восприняли греки, а потом Рим, где она была усовершенствована введением високосных годов. Так возник стандартный календарь западного мира. Однако, поскольку у египтян, греков и римлян не было ноля, не имеет ноля и западный календарь – недостаток, который через тысячелетия создал много проблем.
Придуманная египтянами новинка – солнечный календарь – была прорывом в знании, но они оставили и более важный след в истории: изобрели геометрию. Даже не имея ноля, египтяне скоро стали мастерами в математике. Им пришлось ими стать из-за грозной реки: Нил каждый год выходил из берегов и затоплял дельту. Это было благом – разлив приносил на поля богатый аллювиальный ил, делая долину Нила самой богатой земледельческой областью древнего мира. Однако река уничтожала межи, стирая все границы между полями, и крестьяне не знали, какие участки им возделывать. (Египтяне очень серьезно относились к правам собственности: согласно Книге мертвых, умерший должен был поклясться богам, что не обманывал соседа, захватив его землю, иначе за прегрешение сердце виновного скармливалось страшному чудовищу, именуемому Пожирающим. Захват чужой земли считался в Египте не менее тяжким преступлением, чем нарушение клятвы, убийство или мастурбация в храме.)
Древние фараоны назначали землемеров для оценки ущерба и восстановления разметки полей – так и родилась геометрия. Землемеры, или натягиватели веревок (называвшиеся так по своим измерительным приспособлениям: веревкам с узлами, благодаря которым можно было определить прямой угол), со временем научились определять площадь участков земли, разделяя их на прямоугольники и треугольники. Египтяне также научились измерять объемы объектов – таких, как пирамиды. Египетские математики были знамениты по всему Средиземноморью; вероятно, древнегреческие геометры – Фалес и Пифагор – учились в Египте. Однако несмотря на блестящие достижения, ноль в Египте так и не появился.
Причина была отчасти в том, что египтяне интересовались только практической стороной дела. Они так и не пошли дальше измерения объемов и подсчета дней и часов. Математика не использовалась для чего-либо отвлеченного, если не считать астрологии. В результате даже лучшие египетские математики не могли использовать принципы геометрии там, где это не было связано с реальным миром: они не превратили свою математическую систему в абстрактную систему логики. Они также не соотносили математику с философией. Греки отличались от египтян тем, что пользовались абстракциями и философскими категориями; они довели математику до ее верхней точки в древности. Однако не греки открыли ноль. Ноль пришел с Востока, а не с Запада.