Читать книгу Enzyme-Based Organic Synthesis - Cheanyeh Cheng - Страница 40
References
Оглавление1 1 Guo, F. and Berglund, P. (2017). Green Chem. 19: 333–360.
2 2 Fuchs, M., Farnberger, J.E., and Kroutil, W. (2015). Eur. J. Org. Chem. 6965–6962.
3 3 Truppo, M.D., Rozzell, J.D., Moore, J.C., and Turner, N.J. (2009). Org. Biomol. Chem. 7: 395–398.
4 4 Stewart, J.D. (2001). Current Opin. Chem. Biol. 5: 120–129.
5 5 Park, E., Kim, M., and Shin, J.‐S. (2010). Adv. Synth. Catal. 352: 3391–3398.
6 6 Land, H., Hendil‐Forssell, P., Martinelle, M., and Berglund, P. (2016). Catal. Sci. Technol. 6: 2897–2900.
7 7 Kohls, H., Anderson, M., Dickerhoff, J. et al. (2015). Adv. Synth. Catal. 357: 1808–1814.
8 8 Sattler, J.H., Fuchs, M., Mutti, F.G. et al. (2014). Angew. Chem., Int. Ed. 53: 14153–14157.
9 9 Mutti, F.G. and Kroutil, W. (2012). Adv. Synth. Catal. 354: 3409–3413.
10 10 Fuchs, C.S., Simon, R.C., Riethorst, W. et al. (2014). Biorg. Med. Chem. 22: 5558–5562.
11 11 Savile, C.K., Janey, J.M., Mundorff, E.C. et al. (2010). Science 329: 305–309.
12 12 Truppo, M.D., Strotman, H., and Hughes, G. (2012). ChemCatChem 4: 1071–1074.
13 13 Andrade, L.H., Kroutil, W., and Jamison, T.F. (2014). Org. Lett. 16: 6092–6095.
14 14 Wohlgemuth, R. (2005). Chimia 59: 735–740.
15 15 Křen, V. and Thiem, J. (1997). Chem. Chem. Soc. Rev. 26: 463–473.
16 16 Gloster, T.M. (2014). Curr. Opin. Chem. Biol. 28: 131–141.
17 17 Leloir, L.F. (1971). Science 172: 1299–1303.
18 18 Koeller, K.M. and Wong, C.‐H. (2000). Chem. Rev. 100: 4465–4493.
19 19 Tsuji, S. (1996). J. Biochem. 120: 1–13.
20 20 Sears, P. and Wong, C.‐H. (1998). Cell. Mol. Life Sci. 54: 223–252.
21 21 Wong, C.‐H., Haynie, S.L., and Whitesides, G.M. (1982). J Org. Chem. 47: 5416–5418.
22 22 Křen, V. (1997). Top. Curr. Chem. 186: 45–64.
23 23 Riva, S.J. (2002). Mol. Catal. B Enzym. 19‐20: 43–54.
24 24 Kaulpiboon, J., Pongsawasdi, P., and Zimmermann, W. (2007). FEBS J. 274: 1001–1010.
25 25 Van der Veen, B.A., van Alebeek, G.‐J.W.M., Uitdehaag, J.C.M. et al. (2000). Eur. J. Biochem. 267: 658–665.
26 26 Pitcher, J., Smythe, C., and Cohen, P. (1988). Eur. J. Biochem. 176: 391–395.
27 27 Hurley, T.D., Stout, S., Miner, E. et al. (2005). J. Biol. Chem. 280: 23892–23899.
28 28 Smythe, C. and Cohen, P. (1991). Eur. J. Biochem. 200: 625–631.
29 29 Zeqiraj, E., Tang, X., Hunter, R.W. et al. (2014). Proc. Natl. Acad. Sci. USA 111: E2831–E2840.
30 30 Zhang, Z., Gildersleeve, J., Yang, Y.‐Y. et al. (2004). Science 303: 371–373.
31 31 Wong, C.‐H. (2005). J. Org. Chem. 70: 4219–4225.
32 32 Rush, R.S., Derby, P.L., Smith, D.M. et al. (1995). Anal. Chem. 67: 1442–1452.
33 33 Sears, P. and Wong, C.‐H. (2001). Science 291: 2344–2350.
34 34 Macmillan, D. and Bertozzi, C.R.A. (2004). Chem. Int, Ed. 43: 1355–1359.
35 35 Wang, L. and Schult, P.G. (2005). Angew. Chem. Int. Ed. 44: 34–66.
36 36 Liu, H., Wang, L., Brock, A. et al. (2003). J. Am. Chem. Soc. 125: 1702–1703.
37 37 Xu, R., Hanson, S.R., Zhang, Z. et al. (2004). J. Am. Chem. Soc. 126: 15654–15655.
38 38 McMurry, J.; Castellion, M.E. (1999). Fundamentals of General, Organic, and Biological Chemistry, 3rd Ed., Prentice Hall, New Jersey: Upper Saddle River, pp. 673.
39 39 Uliana, A.S., Crespo, P.M., Martina, J.A. et al. (2006). J. Biol. Chem. 281: 32852–32860.
40 40 Giraudo, C.G. and Maccioni, H.J.F. (2003). J. Biol. Chem. 278: 40262–40271.
41 41 Chapman, E. and Wong, C.‐H. (2002). Bioorg. Med. Chem. 10: 551–555.
42 42 Renzone, G., Salzano, A.M., Arena, S.D. et al. (2006). J. Proteome Res. 5: 2019–2024.
43 43 Jin, Y., Molt, R.W. Jr., and Blackburn, G.M. (2017). Top. Curr. Chem.(Z) 375: 36–66.
44 44 Thiaville, J.J., Flood, J., Yurgrl, S. et al. (2016). ACS Chem. Biol. 11: 2304–2311.
45 45 Sfeir, C., Fang, P.‐A., Jayaraman, T. et al. (2014). Acta Biomater. 10: 2241–2249.
46 46 Rivière, L., Moreau, P., Allmann, S. et al. (2009). PNAS 106: 12694–12699.
47 47 Kuang, Y., Salem, N., Wang, F. et al. (2007). J. Biochem. Biophys. Methods 70: 649–655.
48 48 Tan, D.‐X., Hardeland, R., Back, K. et al. (2016). J. Pineal Res. 61: 27–40.
49 49 Weissbach, H., Redfield, B.G., and Axelrod, J. (1960). Biochim. Biophys. Acta 43: 352–353.
50 50 Axelrod, J. and Weissbach, H. (1960). Science 131: 1312.
51 51 Liu, J., Ng, T., Rui, Z. et al. (2014). Angew. Chem. Int. Ed. 53: 136–139.
52 52 Witkop, B. (1998). Heterocycles 49: 9–27.
53 53 Granacher, R.P. and Baldessarini, R.J. (1976). Clin. Neuropharmacol. 1: 63–79.
54 54 Brockhausen, I., Nair, D.G., Chen, M. et al. (2016). Biochem. Cell Biol. 94: 197–204.
55 55 Vetting, M.W., de Carvalho, L.P.S., Yu, M. et al. (2005). Arch. Biochem. Biophys. 433: 212–226.
56 56 Wang, S.X., Cherian, A., Dumitriu, M. et al. (2007). J. Rheumatol. 34: 712–720.
57 57 Brockhausen, I. and Anastassiades, T.P. (2008). Expert Rev. Clin. Immunol. 4: 173–191.
58 58 Anastssiades, T., Rees‐Milton, K., Xiao, H. et al. (2013). Transl. Res. 162: 93–101.
59 59 Walsh, C.T., Garneau‐Tsodikova, S., and Gatto, G.J. Jr. (2005). Angew. Chem. Int. Ed. Engl. 44: 7342–7372.
60 60 Clark, R.S., Bayir, H., and Jenkins, L.W. (2005). Crit. Care Med. 33: S407–S409.
61 61 Kim, Y., Tanner, K.G., and Denu, J.M. (2000). Anal. Biochem. 280: 380–314.
62 62 Grunstein, M. (1997). Nature 389: 349–352.
63 63 Guarente, L. and Picard, F. (2005). Cell 120: 473–482.
64 64 Timmermann, S., Lehrmann, H., Polesskaya, A., and Harel‐Bellan, A. (2001). Cell Mol. Life Sci. 58: 728–736.
65 65 Jaudzems, K., Kuka, J., Gutsaits, A. et al. (2009). Enzym. Inhib. Med. Chem. 24: 1269–1275.
66 66 Longo, N., Frigeni, M., and Pasquali, M. (1863). Biochim. Biophys. Acta 2016 : 2422–1325.
67 67 Ramsay, R.R. and Zammit, V.A. (2004). Mol. Aspects Med. 25: 475–493.
68 68 Raj, H.G., Parmer, V.S., Jain, S.C. et al. (1999). Bioorg. Med. Chem. 7: 2091–2094.
69 69 Raj, H.G., Parmer, V.S., Jain, S.C. et al. (1999). Bioorg. Med. Chem. 7: 369–373.
70 70 Raj, H.G., Parmer, V.S., Jain, S.C. et al. (2000). Bioorg. Med. Chem. 8: 1707–1712.
71 71 Arora, S., Vohra, P., Kumar, A. et al. (2008). Biol. Pharm. Bull. 31: 709–713.
72 72 Hogman, M., Frostell, C.G., Hedenstrom, H., and Hedenstierna, G. (1993). Am. Rev. Respir. Dis. 148: 1474–1478.