Читать книгу Principles of Superconducting Quantum Computers - Daniel D. Stancil - Страница 5

Contents

Оглавление

Cover

Title page

Copyright

Dedication

Preface

Acknowledgments

About the Companion Website

1 Qubits, Gates, and Circuits1.1 Bits and Qubits1.1.1 Circuits in Space vs. Circuits in Time1.1.2 Superposition1.1.3 No Cloning1.1.4 Reversibility1.1.5 Entanglement1.2 Single-Qubit States1.3 Measurement and the Born Rule1.4 Unitary Operations and Single-Qubit Gates1.5 Two-Qubit Gates1.5.1 Two-Qubit States1.5.2 Matrix Representation of Two-Qubit Gates1.5.3 Controlled-NOT1.6 Bell State1.7 No Cloning, Revisited1.8 Example: Deutsch’s Problem1.9 Key Characteristics of Quantum Computing1.10 Quantum Computing Systems1.11 Exercises

2 Physics of Single Qubit Gates2.1 Requirements for a Quantum Computer2.2 Single Qubit Gates2.2.1 Rotations2.2.2 Two State Systems2.2.3 Creating Rotations: Rabi Oscillations2.3 Quantum State Tomography2.4 Expectation Values and the Pauli Operators2.5 Density Matrix2.6 Exercises

10 3 Physics of Two Qubit Gates3.1 iSWAP Gate3.2 Coupled Tunable Qubits3.3 Cross Resonance Scheme3.4 Other Controlled Gates3.5 Two-Qubit States and the Density Matrix3.6 Exercises

11 4 Superconducting Quantum Computer Systems4.1 Transmission Lines4.1.1 General Transmission Line Equations4.1.2 Lossless Transmission Lines4.1.3 Transmission Lines with Loss4.2 Terminated Lossless Line4.2.1 Reflection Coefficient4.2.2 Power (Flow of Energy) and Return Loss4.2.3 Standing Wave Ratio (SWR)4.2.4 Impedance as a Function of Position4.2.5 Quarter Wave Transformer4.2.6 Coaxial, Microstrip, and Coplanar Lines4.3 S Parameters4.3.1 Lossless Condition4.3.2 Reciprocity4.4 Transmission (ABCD) Matrices4.5 Attenuators4.6 Circulators and Isolators4.7 Power Dividers/Combiners4.8 Mixers4.9 Low-Pass Filters4.10 Noise4.10.1 Thermal Noise4.10.2 Equivalent Noise Temperature4.10.3 Noise Factor and Noise Figure4.10.4 Attenuators and Noise4.10.5 Noise in Cascaded Systems4.11 Low Noise Amplifiers4.12 Exercises

12 5 Resonators: Classical Treatment5.1 Parallel Lumped Element Resonator5.2 Capacitive Coupling to a Parallel Lumped-Element Resonator5.3 Transmission Line Resonator5.4 Capacitive Coupling to a Transmission Line Resonator5.5 Capacitively-Coupled Lossless Resonators5.6 Classical Model of Qubit Readout5.7 Exercises

13 6 Resonators: Quantum Treatment6.1 Lagrangian Mechanics6.1.1 Hamilton’s Principle6.1.2 Calculus of Variations6.1.3 Lagrangian Equation of Motion6.2 Hamiltonian Mechanics6.3 Harmonic Oscillators6.3.1 Classical Harmonic Oscillator6.3.2 Quantum Mechanical Harmonic Oscillator6.3.3 Raising and Lowering Operators6.3.4 Can a Harmonic Oscillator Be Used as a Qubit?6.4 Circuit Quantum Electrodynamics6.4.1 Classical LC Resonant Circuit6.4.2 Quantization of the LC Circuit6.4.3 Circuit Electrodynamic Approach for General Circuits6.4.4 Circuit Model for Transmission Line Resonator6.4.5 Quantizing a Transmission Line Resonator6.4.6 Quantized Coupled LC Resonant Circuits6.4.7 Schrödinger, Heisenberg, and Interaction Pictures6.4.8 Resonant Circuits and Qubits6.4.9 The Dispersive Regime6.5 Exercises

14 7 Theory of Superconductivity7.1 Bosons and Fermions7.2 Bloch Theorem7.3 Free Electron Model for Metals7.3.1 Discrete States in Finite Samples7.3.2 Phonons7.3.3 Debye Model7.3.4 Electron–Phonon Scattering and Electrical Conductivity7.3.5 Perfect Conductor vs. Superconductor7.4 Bardeen, Cooper, and Schrieffer Theory of Superconductivity7.4.1 Cooper Pair Model7.4.2 Dielectric Function7.4.3 Jellium7.4.4 Scattering Amplitude and Attractive Electron–Electron Interaction7.4.5 Interpretation of Attractive Interaction7.4.6 Superconductor Hamiltonian7.4.7 Superconducting Ground State7.5 Electrodynamics of Superconductors7.5.1 Cooper Pairs and the Macroscopic Wave Function7.5.2 Potential Functions7.5.3 London Equations7.5.4 London Gauge7.5.5 Penetration Depth7.5.6 Flux Quantization7.6 Chapter Summary7.7 Exercises

15 8 Josephson Junctions8.1 Tunneling8.1.1 Reflection from a Barrier8.1.2 Finite Thickness Barrier8.2 Josephson Junctions8.2.1 Current and Voltage Relations8.2.2 Josephson Junction Hamiltonian8.2.3 Quantized Josephson Junction Analysis8.3 Superconducting Quantum Interference Devices (SQUIDs)8.4 Josephson Junction Parametric Amplifiers8.5 Exercises

16 9 Errors and Error Mitigation9.1 NISQ Processors9.2 Decoherence9.3 State Preparation and Measurement Errors9.4 Characterizing Gate Errors9.5 State Leakage and Suppression Using Pulse Shaping9.6 Zero-Noise Extrapolation9.7 Optimized Control Using Deep Learning9.8 Exercises

17 10 Quantum Error Correction10.1 Review of Classical Error Correction10.1.1 Error Detection10.1.2 Error Correction: Repetition Code10.1.3 Hamming Code10.2 Quantum Errors10.3 Detecting and Correcting Quantum Errors10.3.1 Bit Flip10.3.2 Phase Flip10.3.3 Correcting Bit and Phase Flips: Shor’s 9-Qubit Code10.3.4 Arbitrary Rotations10.4 Stabilizer Codes10.4.1 Stabilizers10.4.2 Stabilizers for Error Correction10.5 Operating on Logical Qubits10.6 Error Thresholds10.6.1 Concatenation of Error Codes10.6.2 Threshold Theorem10.7 Surface Codes10.7.1 Stabilizers10.7.2 Error Detection and Correction10.7.3 Logical X and Z Operators10.7.4 Multiple Qubits: Lattice Surgery10.7.5 CNOT10.7.6 Single-Qubit Gates10.8 Summary and Further Reading10.9 Exercises

18 11 Quantum Logic: Efficient Implementation of Classical Computations11.1 Reversible Logic11.1.1 Reversible Logic Gates11.1.2 Reversible Logic Circuits11.2 Quantum Logic Circuits11.2.1 Entanglement and Uncomputing11.2.2 Multi-Qubit Gates11.2.3 Qubit Topology11.3 Efficient Arithmetic Circuits: Adder11.3.1 Quantum Ripple-Carry Adder11.3.2 In-Place Ripple-Carry Adder11.3.3 Carry-Lookahead Adder11.3.4 Adder Comparison11.4 Phase Logic11.4.1 Controlled-���� and Controlled-Phase Gates11.4.2 Selective Phase Change11.4.3 Phase Logic Gates11.5 Summary and Further Reading11.6 Exercises

19 12 Some Quantum Algorithms12.1 Computational Complexity12.1.1 Quantum Program Run-Time12.1.2 Classical Complexity Classes12.1.3 Quantum Complexity12.2 Grover’s Search Algorithm12.2.1 Grover Iteration12.2.2 Quantum Implementation12.2.3 Generalizations12.3 Quantum Fourier Transform12.3.1 Discrete Fourier Transform12.3.2 Inverse Discrete Fourier Transform12.3.3 Quantum Implementation of the DFT12.3.4 Encoding Quantum States12.3.5 Quantum Implementation12.3.6 Computational Complexity12.4 Quantum Phase Estimation12.4.1 Quantum Implementation12.4.2 Computational Complexity and Other Issues12.5 Shor’s Algorithm12.5.1 Hybrid Classical-Quantum Algorithm12.5.2 Finding the Period12.5.3 Computational Complexity12.6 Variational Quantum Algorithms12.6.1 Variational Quantum Eigensolver12.6.2 Quantum Approximate Optimization Algorithm12.6.3 Challenges and Opportunities12.7 Summary and Further Reading12.8 Exercises

20  Bibliography

21  Index

22  End User License Agreement

Principles of Superconducting Quantum Computers

Подняться наверх