Читать книгу Тяжелосредное обогащение углей - Данил Александрович Полулях - Страница 3

Глава 1. Тяжелосредное обогащение как технологический процесс
1.1. Общие сведения
1.1.2. Термины и определения

Оглавление

Обогащение в тяжелых средах – метод разделения углей по плотности в истинных тяжелых жидкостях или минеральных суспензиях.

Истинные тяжелые жидкости – водные растворы неорганических солей и органические жидкости – в производственных условиях имеют ограниченное применение. Их используют в основном для разделения углей по плотности при фракционном анализе и контроле качества продуктов обогащения.

Взвеси в воде тонкоизмельченных утяжелителей – минеральные суспензии – широко распространены во всем мире в качестве разделяющей среды при обогащении углей.

В отечественной и зарубежной практике применяют преимущественно минеральные суспензии, в которых в качестве утяжелителя используют магнетитовый концентрат, позволяющий получать плотность разделяющей среды, достаточную для успешного обогащения всех видов твердых горючих ископаемых (каменных и бурых углей, антрацитов, горючих сланцев).

В некоторых странах в качестве утяжелителей в ограниченных масштабах используют барит, кварцевый песок, глину, лёсс и другие материалы, однако эти утяжелители не выдерживают конкуренции с магнетитом.

Следует отметить следующие особенности метода обогащения в тяжелых средах:

простоту регулирования и широкую возможность автоматизации производственного процесса;

малую чувствительность к колебаниям нагрузки (в пределах нагрузочной устойчивости оборудования) и качественного состава питания;

возможность эффективного обогащения углей с трудной и очень трудной характеристикой обогатимости и высоким содержанием свободной породы;

возможность разделения обогащаемого сырья в широком диапазоне крупности – от самых крупных штучных кусков (размером 500 мм и более) до мелкого материала (примерно до 0,2–0,5 мм и менее);

высокую точность разделения, обеспечивающую минимальное засорение конечных продуктов посторонними фракциями;

широкий диапазон изменения плотности разделения (от 1300–1350 до 2000–2200 кг/м3) с предельно точной регулировкой плотности разделяющей среды;

незначительное шламообразование в обогатительных аппаратах, возможность удаления размокающей породы в начале технологического процесса;

наименьший (по сравнению с другими мокрыми процессами обогащения) расход технологической воды.

Перечисленные достоинства тяжелосредного метода обогащения относятся к технологии обогащения как крупного, так и мелкого угля и угольного шлама. Обогащение крупного угля в магнетитовой суспензии осуществляется в тяжелосредных сепараторах, мелкого угля и угольного шлама – в тяжелосредных гидроциклонах.

Условия разделения частиц обогащаемого угля в тяжелой среде определяется соотношением сил, действующих на частицу: силы тяжести Fg и подъемной (архимедовой) силы FА, с учетом сил сопротивления среды и механического взаимодействия частиц при их соприкосновении. Равнодействующая G сил, действующих на частицу в неподвижной среде:


С учетом того, что Fg = Vδчg и FА = Vδсg, где V – объем частицы; δч и δч – плотность частицы и среды; g – ускорение свободного падения, получим


Возможны три условия разделения частиц: δч > δс; δч < δс и δч = δс. В первом случае G > 0 и частица тонет, во втором G < 0 и частица всплывает, в третьем G = 0 и частица находится во взвешенном состоянии.

С уменьшением размеров зерен снижается разность скоростей их падения и резко возрастает время, необходимое для их разделения.

Интенсифицировать процесс обогащения мелких зерен угля можно в поле действия центробежных сил, возникающих при вращательном движении суспензии. Центробежную силу Fц, действующую на частицу, определяют по формуле


где m – масса частицы; ω – окружная скорость вращения; r – радиус вращения; ω2/r – центробежное ускорение.

С учетом того, что m = Fg /g и ω = 2πrn/60, где n – частота вращения, получим


Подставив числовые значения для π и g, окончательно получим


Из полученного выражения следует, что значение центробежной силы в значительно большей степени зависит от частоты вращения суспензии, чем от радиуса вращения тела.

Для разделения мелкого угля по плотности в центробежном поле используют тяжелосредные гидроциклоны. Мелкий уголь вместе с суспензией (с определенной скоростью и под давлением) тангенциально вводят в гидроциклон. Плотность разделения угля в тяжелосредном гидроциклоне может быть равной ил выше плотности суспензии, подаваемой в него вместе с углем. Частицы угля, плотность которых меньше плотности разделения, удаляются из гидроциклона вместе с суспензией через сливной патрубок, а частицы с большей плотностью разгружаются через песковую насадку гидроциклона.

Плотность разделения в тяжелосредном сепараторе соответствует плотности магнетитовой суспензии, подаваемой в сепаратор.

Плотность разделения в тяжелосредном двухпродуктовом гидроциклоне может превышать плотность магнетитовой суспензии примерно на 20 % за счет расслоения утяжелителя.

Степень расслоения частиц утяжелителя зависит также от продолжительности пребывания суспензии в гидроциклоне. При большой скорости протекания суспензия не успевает полностью расслоится.

В трехпродуктовых тяжелосредных гидроциклонах превышение плотности разделения во второй ступени может достигать, в сравнении с плотностью разделения в первой, примерно на 400–500 кг/м3.

Для ориентировочного расчета разности плотностей между I и II ступенями разделения в трехпродуктовом тяжелосредном гидроциклоне В.И. Хайдакин предложил эмпирическую формулу


где S0 – параметр, характеризующий степень сгущения суспензии и зависящий от размера частиц утяжелителя, содержания шлама в суспензии, ее плотности и давления на входе в гидроциклон.

Для магнетита марки «М» (средний взвешенный диаметр зерна утяжелителя 40–50 мкм) S0 определяется эмпирическим соотношением


где p – давление на входе в циклон, МПа; Сш – содержание шлама в суспензии, кг/м3; δс – плотность суспензии, кг/м3.

Наиболее рациональные области применения тяжелосредного обогащения:

крупные классы углей для коксования и энергетики и антрациты (от 13–25 до 200–300 мм) очень трудной, трудной, средней и легкой обогатимости при содержании породных фракций (плотностью +1800 кг/м3 – для углей, +2000 кг/м3 – для антрацитов) более 35 % и выходе класса >13 мм более 20 % с разделением на три и два продукта;

крупные классы (>25 мм) сланцев;

мелкие классы углей для коксования (от 0,2–0,5 до 13; 25; 40 мм) трудной и очень трудной обогатимости с разделением на три продукта;

мелкие классы энергетических углей трудной и очень трудной обогатимости и антрациты (от 0,5 до 13(25) мм) с разделением на два продукта;

промпродукты отсадки крупных (после додрабливания) и мелких каменных углей и антрацитов (0,5-13 мм) с разделением на три и два продукта.

Тяжелосредное обогащение твердых горючих ископаемых может производиться также с целью получения продуктов высокого качества для специальных целей, например, антрацитовых концентратов для электродной промышленности, малосернистых угольных концентратов, сланцевых концентратов с повышенным содержанием органической массы.

Тяжелосредное обогащение углей

Подняться наверх