Читать книгу Тяжелосредное обогащение углей - Данил Александрович Полулях - Страница 9

Глава 1. Тяжелосредное обогащение как технологический процесс
1.3. Магнетитовая суспензия

Оглавление

1.3.1. Основные формулы для расчета параметров магнетитовых суспензий

Расчет основных параметров магнетитовой суспензии производится по формулам, основанным на балансе твердой и жидкой фаз в данном объеме. Твердая фаза в магнетитовой суспензии может быть представлена в виде магнетита или в виде смеси магнетита и угольного шлама.

В расчетных формулах приняты следующие обозначения:

δ – плотность, кг/м3;

δв – плотность воды, кг/м3;

δт– плотность твердого материала, кг/м3;

δм– плотность магнетита, кг/м3;

δш– плотность шлама, кг/м3;

δр. у.– плотность рядового угля, кг/м3;

δс.м.– плотность магнетитовой суспензии, кг/м3;

δс– плотность суспензии, кг/м3;

V– объем, м3;

Vв– объем воды, м3;

Vт– объем твердого материала, м3;

Vм– объем магнетита, м3;

Vш– объем шлама, м3;

Vр. у.– объем рядового угля, м3;

Vс– объем суспензии, м3;

Vс. м.– объем магнетитовой суспензии, м3;

М– масса, кг;

Мв– масса воды, кг;

Мт– масса твердого материала, кг;

Мм– масса магнетита, кг;

Мш– масса шлама, кг;

Мр. у.– масса рядового угля, кг;

Мс. м.– масса магнетитовой суспензии, кг;

Мс– масса суспензии, кг;

Ст– содержание твердого в 1 м3 магнетитовой суспензии, кг/м3;

См– содержание магнетита в 1 м3 магнетитовой суспензии, кг/м3;

С%– концентрация твердого по массе в магнетитовой суспензии, в долях единицы или в %;

R = Т: Ж – отношение массовых количеств компонентов магнетитовой суспензии.

В ориентировочных расчетах рекомендуется принимать:

δв = 1000 кг/м3 – плотность воды;

δм = 4600 кг/м3 – средняя плотность магнетита;

δш1 = 1500 кг/м3 – средняя плотность угольного шлама;

δш2 = 1700 кг/м3 – средняя плотность антрацитового шлама.

Все параметры магнетитовой суспензии рекомендуется определять на единицу объема.

Плотность магнетитовой суспензии выбирают в зависимости от свойства обогащаемого угля и целей обогащения.

Плотность магнетитовой суспензии


Принимая для воды δв = 1000 кг/м3 получаем


Отсюда требуемое содержание магнетита


Количество магнетита необходимое для приготовления объема 1 м3 магнетитовой суспензии


При подсчете плотности рабочей суспензии необходимо учитывать наличие в ней угольного шлама. В этом случае определяют среднюю плотность твердой фазы, исходя из баланса магнетита и шлама.

Плотность рабочей магнетитовой суспензии δс, образовавшейся из смеси магнетита и шлама


В процессе эксплуатации тяжелосредных установок плотность рабочей магнетитовой суспензии может систематически снижаться, например, при обогащении мокрых углей, либо повышаться за счет уноса воды с продуктами обогащения и возврата суспензии более высокой плотности из цикла регенерации.

Расчет добавок для корректировки плотности суспензии производится следующим образом.

Если первоначальная плотность суспензии δс возросла до δс1, то к ее объему Vс нужно добавить низкоплотную суспензию (или воду) плотностью δдн (δдн <δс <δс1).

Объем добавки пониженной плотности Vдн для восстановления первоначальной плотности магнетитовой суспензии


В случае понижения плотности рабочей суспензии до δс2 требуется добавка высокоплотной суспензии (или концентрата магнитной регенерации) плотностью δдв (δдв <δс <δс2) в объеме Vдв


1.3.2. Свойства магнетитовых суспензий

Наиболее важными физическими свойствами магнетитовых суспензий при гравитационном обогащении являются плотность, вязкость и гравитационная устойчивость.

Плотность суспензии – это отношение массы суспензии Мс к занимаемому его объему Vс


Плотность суспензии зависит от объемной концентрации и плотности магнетита δм


откуда объемная концентрация магнетита


Плотность магнетитовой суспензии выбирают в зависимости от свойства обогащаемого угля и целей обогащения. Она должна быть промежуточной между плотностями разделяемых компонентов. В практике обогащения углей обычно используются суспензии плотностью от 1350 до 2050 кг/м3.

Плотность суспензии является основным показателем, характеризующим граничную плотность разделения, которая зависит также от крупности обогащаемого угля, скорости потока суспензии в различных зонах обогатительного аппарата, зашламленности суспензии и дисперсности утяжелителя.

С технологической точки зрения различают два типа суспензии: кондиционную, или рабочую (суспензия заданной плотности, подаваемая из сборника в аппарат для обогащения), некондиционную или разбавленную (суспензия, получаемая после отмывки утяжелителя от продуктов обогащения на обезвоживающих грохотах, случайных переливов и капельных вод, содержащих магнетит). В некондиционную суспензию подается также часть кондиционной суспензии для очистки ее в процессе регенерации от шлама. Плотность некондиционной суспензии обычно не превышает 1100 кг/м3.

Вязкость суспензии – это свойство ее оказывать сопротивление при перемещении слоев жидкости, включающих твердые частицы, относительно друг друга. Сопротивление скольжению оказывает не только внутреннее трение жидкости, обусловленное молекулярным притяжением, но также и трение взвешенных частиц друг о друга и о жидкость.

Вязкость разжиженных суспензий незначительно отличается от вязкости однородных жидкостей или растворов. С увеличением концентрации утяжелителя и его дисперсности повышаются плотность суспензии и ее способность оказывать сопротивление сдвигу отдельных слоев. При определенных условиях наблюдается структурирование суспензии, когда частицы утяжелителя связываются в одну общую сетчатую структуру. При объемном содержании утяжелителя 20–25 % проявляются структурно-механические свойства суспензии, а при содержании утяжелителя 40–44 % суспензия практически теряет подвижность. Эффективность обогащения в тяжелых средах в большой степени зависит от состояния среды разделения, характеризуемой реологическими свойствами суспензии – вязкостью и предельным напряжением сдвига.

Для определения вязкости суспензии в зависимости от объемной концентрации твердой фазы с учетом гидродинамического взаимодействия частиц утяжелителя наиболее приемлема эмпирическая формула Ванда


где μс – вязкость суспензии, Па·с; μв – вязкость воды при температуре 20°С; μв = 0,001 Па·с; С – объемная концентрация утяжелителя, доли единиц.

Эта формула пригодна для суспензий при объемной концентрации твердой фазы от 0 до 0,444.

Различают динамическую и кинематическую вязкости.

Вязкость магнетитовой суспензии зависит от плотности, дисперсности утяжелителя, его содержания, дисперсности и петрографического состава угольного шлама. Суспензии магнетита плотностью до 2000 кг/м3 имеют достаточно низкую вязкость (до 5,5 · 10-3 Па·с). Содержание шлама в суспензии, особенно глинистого, является определяющим фактором при оценке пригодности суспензии. При высокой плотности суспензии накопление в ней тонких частиц угля и пород ведет к резкому возрастанию вязкости и предельного напряжения сдвига. Магнетитовые суспензии тех плотностей, которые обычно применяются при обогащении углей, относятся к структурно-вязким системам, обладающим в некоторой области (при содержании твердого более 27,5-32,5 %) пластической текучестью. В этой области резко ухудшается эффективность разделения обогащаемого материала.

Для магнетитовых суспензий вязкость не является постоянной величиной и изменяется в зависимости от касательного напряжения сдвига и градиента скорости среды: практически она прямо пропорциональна ее плотности. При критической плотности суспензии происходит резкое возрастание ее вязкости. Предельное напряжение сдвига и вязкость возрастают с увеличением плотности суспензии и содержания в ней тонких угольных и породных шламов.

Породные шламы в неразмокаемых породах влияют в меньшей степени, чем угольные, на вязкость и предельное напряжение сдвига суспензии. Наличие в породе глинистых сланцев и глины значительно повышает эти показатели. По данным многочисленных исследований, установлено, что нормальные условия разделения для углей крупностью более 10(13) мм обеспечиваются при вязкости рабочей суспензии, не превышающей 7 · 10-3 Па·с. Общее содержание твердой фазы в магнетитовой суспензии, включая шлам крупностью 0–1 мм, не должно превышать 32,5 % по объему. В этом случае обеспечивается поддержание вязкости суспензии на допустимом уровне при соотношениях магнетита и шлама, соответствующих данным табл. 1.15.


Таблица 1.15

Предельно допустимое содержание магнетита и шлама в суспензии, кг/м3


При обогащении мелких классов углей в поле действия центробежных сил (в гидроциклонах) содержание шлама в рабочей суспензии может быть в 2–3 раза выше указанных норм – объемная концентрация твердой фазы может достигать 40 %, а вязкость – 4 ·10-2 Па·с.

В промышленных условиях вязкость измеряют по времени истечения 500 мл суспензии из воронки через капилляр диаметром 5 мм и длиной 100 мм, пользуясь воронкообразным полевым вискозиметром СПВ-5 вместимостью 700 мл (рис. 1.13). Измеренная вязкость выражается в относительных единицах. Относительная вязкость определяется по формуле


где μотн – относительная вязкость исследуемой суспензии, Па·с; μв = 0,001 Па·с – вязкость воды при температуре 20°С; δс и δв – плотность соответственно суспензии и воды (δв = 1000 кг/м3), кг/м3; tс и tв – время истечения соответственно суспензии и воды через капилляр, с.

В лабораторных условиях для определения реологических параметров суспензии наибольшее распространение получили капиллярные вискозиметры. ИОТТ и Укрнииуглеобогащением для измерения вязкости суспензии рекомендуется капиллярный вискозиметр, работающий под давлением.


Рис. 1.13. Переносной вискозиметр СПВ-5:

1 – воронка диаметром 165 мм, длиной 440 мм; 2 – стека; 3 – ручка-кронштейн; 4 – капилляр 5×100 мм; 5, 6 – кружка вместимостью 500 см3 и 200 см3


Рис. 1.14. Схема установки капиллярного вискозиметра: 1 – резервуар; 2 – воронка; 3, 4 – патрубки; 5 – манометр; 6 – баллон сжатого воздуха (азота)


Вискозиметр состоит из стеклянного герметичного резервуара с мешалкой (рис. 1.14). Суспензия вводится в вискозиметр через воронку, после чего воронка закрывается, и в резервуар через патрубок от баллона подается сжатый воздух или азот. Резервуар патрубком сообщается с дифференциальным манометром, измеряющим внутреннее давление, при котором происходит истечение суспензии через капилляр. Давление сжатого воздуха или азота регулируется редуктором и изменяется от 0 до 0,122 МПа. Вязкость и предельное напряжение сдвига суспензии рассчитываются по изменению скорости истечения суспензии через капилляр в зависимости от давления. Время истечения суспензии регистрируется секундомером.

Устойчивость суспензии – это способность сохранять плотность в различных по высоте слоях в течение сравнительно длительного периода времени. Устойчивость суспензии существенно влияет на эффективность обогащения и во многом определяет конструкцию основного и вспомогательного оборудования. Скорость осаждения частиц утяжелителя зависит от гранулометрического состава твердой фазы, плотности суспензии, степени засорения ее шламами и формы отдельных зерен. Магнетитовые суспензии статически неустойчивы, в спокойном состоянии зерна магнетита осаждаются. Как низкая, так и чрезмерно высокая устойчивость суспензии отрицательно влияют на эффективность обогащения.

Вследствие расслоения малоустойчивой не загрязненной шламами суспензии в сепараторе фактическая плотность разделения угля может значительно отклоняться от плотности суспензии. С увеличением зашламленности устойчивость суспензии растет, однако одновременно увеличивается и ее вязкость, что снижает эффективность разделения угля и ухудшает отмывку частиц магнетита с поверхности продуктов обогащения.

Статическая устойчивость суспензии измеряется по скорости образования осветленного слоя в измерительном цилиндре за определенное время. При определении динамической устойчивости суспензии в сепараторе измеряется плотность ее в верхнем и нижнем слоях. Устойчивость магнетитовой суспензии оценивается величиной объема осветленной воды (% к общему объему) при отстаивании пульпы плотностью 2000 кг/м3 в цилиндре диаметром 50 мм и вместимостью 500 см3 в течение 5 мин. Магнетит считается пригодным, если объем чистой воды, образовавшийся за указанный промежуток времени, составляет 15–25 % для размагниченного материала и 25–40 % для намагниченного материала с хлопьями.

При обогащении углей в сепараторах необходимо обеспечить стабильность суспензии, в особенности постоянство ее плотности и вязкости.

В производственных условиях стабилизация магнетитовой суспензии осуществляется различными способами:

подбором магнетита определенной крупности;

повышением содержания шлама до определенного предела, границей которого является максимально допустимая вязкость;

перемешиванием ее механизмами, используемыми для выгрузки продуктов обогащения;

созданием вертикальных восходящих и горизонтальных транспортных потоков, подбором их оптимальной скорости;

применением реагентов-пептизаторов для снижения вязкости суспензии при одновременном повышении ее устойчивости.

Тяжелосредное обогащение углей

Подняться наверх