Читать книгу Супернавигаторы. О чудесах навигации в животном мире - Дэвид Барри - Страница 4

Часть I
Навигация без карт
1
Мистер Стедмен и монарх
Первые навигаторы

Оглавление

Когда я начинал свои исследования, я думал только о тех животных, которых можно увидеть, – например, насекомых, птицах, рептилиях, крысах, людях. Однако, хотя первые живые организмы, появившиеся на нашей планете, были чрезвычайно маленькими, первопроходцами в области бионавигации были именно они.

Земля сформировалась около 4,56 миллиарда лет назад в результате случайной встречи блуждающих астероидов, притянутых друг к другу гравитацией. В то время она была не очень-то гостеприимным местом: всю ее поверхность покрывали расплавленные горные породы. Приблизительно 4,5 миллиарда лет назад этот океан магмы начал остывать и затвердевать, и появились первые континенты, но ни океанов, ни даже воздуха на планете еще не было.

В течение сотен миллионов лет молодую планету бомбардировали все новые астероиды, но эти взрывные столкновения приносили не только разрушения. Благодаря им на Земле появилась вода и химические ингредиенты, давшие начало первым живым организмам[7]. Приблизительно 3,9 миллиарда лет назад Земля начала успокаиваться, и в самых глубинах ее первых океанов, вблизи гидротермальных источников – перегретых струй насыщенной минералами воды, бивших тогда и бьющих до сих пор из морского дна, – начали возникать простейшие формы жизни[8]. В их числе были и самые первые бактерии.

Хотя эти одноклеточные организмы чаще всего ассоциируются у нас с болезнями, в подавляющем большинстве своем бактерии безвредны, а многие из них вносят жизненно важный вклад в поддержание нашего физического и даже умственного здоровья. Чтобы выжить, они научились перемещаться к тому, что им нужно (например, к пище), и от того, что для них опасно (например, чрезмерно высокие температуры, слишком высокая или слишком низкая кислотность среды)[9]. У некоторых бактерий имеются специализированные органы движения, в том числе микроскопические моторы, приводящие в движение вращающиеся нитевидные структуры, которые называют жгутиками. Эта простейшая форма навигации известна под названием таксис – от греческого слова τάξις, означающего «порядок» или «строй».

Некоторые из бактерий используют особенно удивительную форму таксиса. Так называемые магнитотаксисные бактерии содержат мельчайшие намагниченные частицы, цепочки которых действуют как микроскопические стрелки компаса. Эти «стрелки» заставляют бактерии ориентироваться вдоль магнитного поля Земли, что помогает им находить дорогу вниз, к бедным кислородом слоям воды и отложений, условия которых особенно благоприятны для них. «Стрелки», которые находят в бактериях Северного полушария, имеют полярность, противоположную тем, которые встречаются у бактерий Южного. Этот простой пример иллюстрирует могущество естественного отбора.

Распознавание окаменевших бактерий – дело чрезвычайно трудное, но остатки магнитотаксисных бактерий находили в горных породах, образовавшихся сотни миллионов, а то и миллиарды лет назад. Хотя считается, что эти бактерии самыми первыми в истории нашей планеты пользовались магнитной навигацией, первые живые образцы были найдены только в 1975 году[10]. Как ни странно, их открытие совпало с демонстрацией использования магнитной навигации гораздо более сложными организмами – птицами.

Наши ближайшие родственники среди одноклеточных организмов имеют весьма труднопроизносимое название – это хоанофлагеллаты[11], или воротничковые жгутиконосцы. Они чуть сложнее бактерий, живут в воде и иногда собираются в колонии. Как и нам, им необходим кислород, и они способны не только обнаруживать чрезвычайно малые перепады его концентрации, но и активно перемещаться в направлении более богатого его источника – опять же при помощи своих жгутиков[12].

Еще сильнее поражают не имеющие мозга скопления единичных клеток, известные под малопривлекательным названием слизевиков. Эти простейшие организмы умеют медленно, но верно перетекать к источнику глюкозы, спрятанному на дне U-образной ловушки. При этом они используют примитивную память, позволяющую им не возвращаться в те места, которые они уже исследовали[13]. Кроме того, они с легкостью решают одну конструкторскую задачу, оказавшуюся сложной для людей: речь идет о проектировании оптимальной железнодорожной сети.

Исследователи обнаружили, что один слизевик, которому предложили множество овсяных хлопьев, разложенных в соответствии со схемой расположения городов вокруг Токио, принялся строить сеть туннелей для распределения питательных веществ, которые он извлекал из этих хлопьев. Как ни поразительно, в конечном виде эта сеть совпала с системой железнодорожного сообщения, реально существующей вокруг Токио. Слизевик решал эту задачу следующим образом: сначала он проложил туннели, идущие во всех направлениях, а затем стал постепенно отсекать лишние, так что в конце концов остались только те туннели, которые обеспечивали транспортировку наибольшего количества питательных веществ (то есть «пассажиров»)[14].

Выше по шкале сложности находятся гораздо более крупные, но все еще очень маленькие многоклеточные организмы, известные под названием «планктон», в изобилии живущие в океанах – в особенности тех, которые окружают Арктику и Антарктику. Многие из этих растений и животных невозможно разглядеть невооруженным глазом, но они часто скапливаются в таких огромных количествах, что море становится похоже на густой суп мисо. При так называемом цветении планктона целое море может приобрести ржаво-красный оттенок.

Такого рода существам не нужно точно знать, где они находятся, – что логично, так как они по большей части находятся во власти океанских течений, – но это вовсе не значит, что они пассивны. В поисках пищи или спасения от тех, кто сам может употребить его в пищу, многие виды животного планктона (или зоопланктона, к которому относятся мальки рыб, мелкие ракообразные и моллюски) на каждом закате и рассвете перемещаются вверх и вниз в толще воды, из темных глубин к поверхности и обратно. Планктон же растительный, который в основном остается вблизи поверхности, чтобы использовать более яркий солнечный свет, в случае необходимости может нырять в глубину, спасаясь от вредоносного воздействия слишком сильного ультрафиолетового излучения.

Выбор моментов таких перемещений обеспечивается способностью планктона отслеживать изменения интенсивности солнечного света, хотя полярной ночью, которая продолжается несколько месяцев, зоопланктон переключается на ритм, связанный с лунным светом[15]. В некоторых случаях в таких процессах участвует нечто большее, чем простая реакция на изменение освещенности. Некоторые виды планктона начинают движение еще до обнаружения каких бы то ни было изменений; даже будучи помещены в затемненный аквариум, они продолжают свою вертикальную миграцию еще в течение нескольких суток. Это загадочное поведение, по-видимому, связано с какими-то внутренними «часами», управляющими их перемещениями[16]. Вся пищевая цепочка океана в конечном счете зависит от планктона, и его колоссальных масштабов суточные миграции играют ключевую роль в жизни всей планеты.

Находить дорогу нужно даже простым червям, и один из них – стандартное подопытное животное, почвенная нематода Caenorhabditis elegans, – по-видимому, роет свои подземные ходы, используя для ориентации магнитное поле Земли[17]. А тритоны, некоторые из которых способны находить дорогу к своему родному водоему на расстоянии до 12 километров, пользуются магнитным компасом[18].

У кубомедуз – маленьких прозрачных животных, печально известных в тропической зоне Австралии сильными ожогами, которые они вызывают, – нет мозга, но есть глаза, и они отнюдь не отдаются на волю течения. Они плавают активно и целеустремленно, охотясь за своей добычей. Как ни странно, глаз у них целых 24 штуки, четырех типов.

Еще удивительнее то, что некоторые из этих медуз способны ориентироваться по объектам, расположенным над поверхностью воды. У одного из видов, часто встречающегося в карибских мангровых болотах, есть группа глаз, которые всегда направлены вверх, как бы ни было повернуто тело медузы. В тканях, расположенных вокруг каждого из этих специализированных глаз, содержатся тяжелые кристаллы гипса, которые и поддерживают такую ориентацию.

Дан Эрик Нильсон, биолог из Лундского университета в Швеции (одного из ведущих центров изучения бионавигации), захотел выяснить, что именно делают эти глядящие вверх глаза. Они с сотрудниками поместили медуз в прозрачные контейнеры с открытым верхом, опустили эти контейнеры в море вблизи мангрового болота и стали наблюдать за поведением медуз при помощи видеокамеры. Когда контейнер находился в зоне прямой видимости от края мангровых зарослей, но в нескольких метрах от их края, медузы регулярно сталкивались со стенкой контейнера, ближайшей к деревьям, как будто пытались подплыть поближе к ним. Когда же контейнер переместили на расстояние, с которого деревья уже не были видны из-под поверхности воды, медузы плавали в нем случайным образом.

По-видимому, медузы используют свои направленные вверх глаза для различения силуэтов мангровых деревьев. Это позволяет им оставаться на мелководье, где обычно скапливается зоопланктон, которым они питаются, – но это возможно, только если они не удаляются от края зарослей на слишком большое расстояние[19].

Это лишь несколько примеров необычайных способностей к навигации, которые проявляют организмы, кажущиеся на первый взгляд весьма простыми.

* * *

В фильме «Невероятное путешествие» (The Incredible Journey, 1963) студии Уолта Диснея рассказывается история двух собак – лабрадора и престарелого бультерьера – и сиамского кота, которых хозяева оставили у друзей. Несчастные животные, не понимая, что их поселили в чужом доме лишь на время, решают самостоятельно вернуться домой, но для этого им нужно пересечь 400 километров незаселенной канадской территории. Пережив ужасающие встречи с медведем и рысью и болезненное знакомство с дикобразом, чуть не утонув, трое животных в конце концов воссоединяются со своей семьей.

Скептики могут сказать, что история эта совершенно невероятна, и будут не правы. В 2016 году овчарка по кличке Перо убежала из своего нового дома в английском Озерном крае и добралась до прежних хозяев, живших в Уэльсе. Пес преодолел расстояние 385 километров всего за 12 суток и явился на место – совершенно неожиданно для хозяев – в прекрасном состоянии. У Перо был вживлен идентификационный микрочип, так что возможность того, что его перепутали с другой собакой, исключена[20].

Никто не знает, как ему это удалось. Наверное, можно предположить, что Перо нашел дорогу домой благодаря какой-нибудь необычайной цепочке счастливых догадок, но поверить в это очень трудно. До сих пор наука уделяла на удивление мало внимания навигационным способностям собак и кошек, хотя недавнее исследование утверждает, что собаки предпочитают мочиться, повернувшись мордой либо на север, либо на юг. Значит, можно предположить, что у них есть какой-то внутренний компас, который по меньшей мере помогает им определить, в какую сторону они направляются. Если это так, собак следует добавить к быстро растущему списку организмов, способных чувствовать магнитное поле Земли[21]. Но один лишь компас не позволил бы Перо найти дорогу домой.

Возможно, Перо сумел каким-то образом отследить дорогу, по которой его везли в новый дом в Озерном крае. Значит ли это, что ему удалось восстановить этот маршрут? Может быть, в этом сыграл какую-то роль его острый нюх.

7

Santosh, M., Arai, T., & Maruyama, S. (2017). ‘Hadean Earth and primordial continents: the cradle of prebiotic life’, Geoscience Frontiers, 8 (2). P. 309–327.

8

Dodd, M. S., Papineau, D., Grenne, T., Slack, J. F., Rittner, M., Pirajno, F., … & Little, C. T. (2017). ‘Evidence for early life in earth’s oldest hydrothermal vent precipitates’, Nature, 543 (7643). P. 60–64.

9

Adler, J. (1976). ‘The sensing of chemicals by bacteria’, Scientific American, 234 (4). P. 40–47.

10

Blakemore, R. (1975). ‘Magnetotactic bacteria’, Science, 190 (4212). P. 377–379.

11

Choanoflagellata.

12

Kirkegaard, J. B., Bouillant, A., Marron, A. O., Leptos, K. C., & Goldstein, R. E. (2016). ‘Aerotaxis in the closest relatives of animals’, eLife, 5, e18109.

13

Reid, C. R., Latty, T., Dussutour, A., & Beekman, M. (2012). ‘Slime mold uses an externalized spatial “memory” to navigate in complex environments’, Proceedings of the National Academy of Sciences, 109 (43). P. 17490–17494.

14

Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, D. P., Fricker, M. D., … & Nakagaki, T. (2010). ‘Rules for biologically inspired adaptive network design’, Science, 327 (5964). P. 439–442.

15

Last, K. S., Hobbs, L., Berge, J., Brierley, A. S., & Cottier, F. (2016). ‘Moonlight drives ocean-scale mass vertical migration of zooplankton during the Arctic winter’, Current Biology, 26 (2). P. 244–251.

16

Häfker, N. S., Meyer, B., Last, K. S., Pond, D. W., Hüppe, L., & Teschke, M. (2017). ‘Circadian Clock Involvement in Zooplankton Diel Vertical Migration’, Current Biology, 27 (14). P. 2194–2201.

17

Vidal-Gadea, A., Ward, K., Beron, C., Ghorashian, N., Gokce, S., Russell, J., … & Pierce-Shimomura, J. (2015). ‘Magnetosensitive neurons mediate geomagnetic orientation in Caenorhabditis elegans’, Elife, 4, e07493.

18

Phillips, J., & Borland, S. C. (1994). ‘Use of a specialized magnetoreception system for homing by the eastern red-spotted newt Notophthalmus viridescens’, Journal of Experimental Biology, 188 (1). P. 275–291.

19

Garm, A., Oskarsson, M., & Nilsson, D. E. (2011). ‘Box jellyfish use terrestrial visual cues for navigation’, Current Biology, 21 (9). P. 798–803.

20

‘Homesick sheepdog walks 240 miles home to Wales after bolting from his new farm in Cumbria’. Daily Telegraph, 25 April 2016.

21

Hart, V., Nováková, P., Malkemper, E. P., Begall, S., Hanzal, V., Ježek, M., … & Červený, J. (2013). ‘Dogs are sensitive to small variations of the earth’s magnetic field’, Frontiers in Zoology, 10 (1). P. 80.

Супернавигаторы. О чудесах навигации в животном мире

Подняться наверх