Читать книгу Математика покера от профессионала - Дэвид Склански - Страница 10

3. Фундаментальная теорема покера

Оглавление

Как существуют Основная теорема алгебры и Основная теорема анализа, так есть и Фундаментальная теорема покера. Настало время вас с ней познакомить. Покер, как и все другие карточные игры, является игрой с неполной информацией, что отличает его от других настольных игр наподобие шахмат, нард или шашек, где вы всегда видите, что делает ваш противник. Если бы карты каждого игрока можно было посмотреть в любое время, то верное математическое решение для любого участника всегда бы точно вычислялось. Любой игрок, отклоняющийся от правильной игры, понижал бы свое математическое ожидание и увеличивал бы ожидание своих оппонентов.

Конечно, при возможности видеть все карты покера просто бы не существовало. Искусство данной игры заключается, с одной стороны, в заполнении пробелов в информации, получаемой от ваших оппонентов при наличии ставок, и, с другой стороны, в сокрытии от других игроков любой информации о своей руке сверх той, что вы сами хотите им сообщить.

Вышесказанное приводит нас к Фундаментальной теореме покера:

Каждый раз, когда вы разыгрываете руку иначе, нежели вы сыграли бы ее, видя все карты ваших оппонентов, они выигрывают; и каждый раз, когда вы разыгрываете вашу руку тем же образом, каким вы бы сыграли ее, если бы могли видеть все карты соперников, они проигрывают. Справедливо и обратное: каждый раз, когда ваши оппоненты разыгрывают свою руку не так, как в случае, когда у них есть возможность видеть все ваши карты, вы выигрываете; и каждый раз, когда они разыгрывают свою руку тем же образом, каким они сыграли бы, видя все ваши карты, вы проигрываете.

Фундаментальная теорема применяется полностью, когда розыгрыш свелся к вашему противостоянию с единственным оппонентом. И она почти всегда применима к раздачам с несколькими активными участниками, однако существуют редкие исключения, которые мы затронем в конце главы.

Что означает Фундаментальная теорема покера? Поймите, что если каким-то образом соперник узнал бы ваши карты, он смог бы принять верное решение о своих действиях. Например, если в дро игре ваш оппонент увидел, что у вас флеш, правильным для него было бы сбросить свою пару тузов на вашу ставку. Колл являлся бы ошибкой, но это особый тип ошибки. Мы не имеем в виду, что ваш противник плохо сыграл раздачу, уравняв с парой тузов; мы говорим о том, что он сыграл бы иначе, если бы знал ваши карты.

Этот пример с флешем вполне понятен. На самом деле вся теорема довольно проста, в том-то и прелесть; однако с ее использованием не всегда все так предельно ясно. Иногда размер суммы денег в банке делает колл верной игрой, даже если вы видите, что рука соперника сильнее вашей. Давайте взглянем на несколько примеров Фундаментальной теоремы покера в действии.

Математика покера от профессионала

Подняться наверх