Читать книгу Packaging Technology and Engineering - Dipak Kumar Sarker - Страница 38
References
Оглавление1 1 Environmental Protection Agency. (2016). Documentation for Greenhouse Gas Emission and Energy Factors Used in the Waste Reduction Model: Containers, Packaging, and Non‐Durable Good Materials Chapters, 1–82. USA: ICF, for the US Environmental Protection Agency, Office of Resource Conservation and Recovery.
2 2 Toommee, S. and Pratumpong, P. (2018). PEG‐template for surface modification of zeolite: a convenient material to the design of polypropylene based composite for packaging films. Results in Physics 9: 71–77. https://doi.org/10.1016/j.rinp.2018.02.006.
3 3 Garavand, F., Rouhi, M., Razavi, S.H. et al. (2017). Improving the integrity of natural biopolymer films used in food packaging by crosslinking approach: a review. International Journal of Biological Macromolecules 104 (A): 687–707. https://doi.org/10.1016/j.ijbiomac.2017.06.093.
4 4 Liston, E.M., Martinu, L., and Wertheimer, M.R. (1993). Plasma surface modification of polymers for improved adhesion: a critical review. Journal of Adhesion Science and Technology 7 (10): 1091–1127.
5 5 Lazić, V.L., Budinski‐Simendić, J., Gvozdenović, J.J., and Simendić, B. (2010). Barrier properties of coated and laminated polyolefin films for food packaging. Polish Academy of Sciences 117 (5): 855–858.
6 6 Buttler, F.G. and Cowie, G.R. (1965). A Manual of Applied Chemistry for Engineers, 222–230. Edinburgh: Oliver and Boyd Ltd.
7 7 Buttler, F.G. and Cowie, G.R. (1965). A Manual of Applied Chemistry for Engineers, 49–51. Edinburgh: Oliver and Boyd Ltd.
8 8 Masmoudi, F., Bessadok, A., Dammak, M. et al. (2016). Biodegradable packaging materials conception based on starch and polylactic acid (PLA) reinforced with cellulose. Environmental Science and Pollution Research 23 (20): 20904–20914. https://doi.org/10.1007/s11356-016-7276-y.
9 9 Schwarz, H.G. (2018). Technology diffusion in the metal industries; driving forces and barrier in the German aluminium smelting sector. Journal of Cleaner Production 16 (Suppl 1): S37–S49. https://doi.org/10.1016/j.clepro.2007.10.024.
10 10 Leeson, D., Fennell, P., Shah, N. et al. (2017). Techno‐economic analysis and systematic review of carbon capture and storage (CCS) applied to the iron and steel, cement, oil refining and pulp and paper industries. Energy Procedia 14: 6297–6302. https://doi.org/10.1016/j.egypro.2017.03.1766.
11 11 Cederberg, D.L., Christiansen, M., Ekroth, S. et al. (2015). Food Contact Materials – Metals and Alloys, 63. Copenhagen: Nordic Council of Ministers, Rosendahls‐Schultz Grafisk. ISBN: 978‐92‐893‐4033‐5 (print).
12 12 Ansel, H.C., Allen, L.V., and Popovich, N.G. (1999). Pharmaceutical Dosage Forms and Drug Delivery Systems, 7e, 157. Philadelphia: Lippincott Williams & Wilkins.
13 13 Ditter, D., Mahler, H.‐C., Roehl, H. et al. (2018). Characterization of surface properties of glass vials used as primary packaging material for parenterals. European Journal of Pharmaceutics and Biopharmaceutics 125: 58–67. https://doi.org/10.1016/j.ejpb.2017.12.018.
14 14 Worrell, E., Galitsky, C., Masanet, E., and Graus, W. (2008). Energy efficiency improvement and cost saving opportunities for the glass industry. In: An ENERGY STAR® Guide for Energy and Plant Managers. LBNL‐57335‐Revision., 1–107. Berkeley: Ernest Orlando Lawrence Berkeley National Laboratory, University of California. Available from: https://escholarship.org/uc/item/21n0z94m.