Читать книгу Statistical Methods and Modeling of Seismogenesis - Eleftheria Papadimitriou - Страница 39

2.7. References

Оглавление

Barall, M. and Tullis, T.E. (2015). The performance of triangular fault elements in earthquake simulators. Seismol. Res. Lett., 87(1), 164–170.

Burridge, R. and Knopoff, L. (1967). Model and theoretical seismicity. Bull. Seism. Soc. Am., 57, 341–371.

Christophersen, A., Rhoades, D.A., Colella, H.V. (2017). Precursory seismicity in regions of low strain rate: Insights from a physics-based earthquake simulator. Geophys. J. Int., 209, 1513–1525.

Colella, H.V., Dieterich, J.H., Richards-Dinger, K.B. (2011). Multi-event simulations of slow slip events for a Cascadia-like subduction zone. Geophys. Res. Lett., 38.

Console, R. and Catalli, F. (2006). A rate-state model for aftershocks triggered by dislocation on a rectangular fault: A review and new insights. Ann. Geophys., 49(6), 1187–1201.

Console, R., Carluccio, R., Papadimitriou, E., Karakostas, V. (2015). Synthetic earthquake catalogs simulating seismic activity in the Corinth gulf, Greece, fault system. J. Geophys. Res., 120(1), 326–343.

Console, R., Nardi, A., Carluccio, R., Murru, M., Falcone, G., Parsons, T. (2017). A physics-based earthquake simulator and its application to seismic hazard assessment in Calabria (southern Italy) region. Acta. Geophys., 65, 243–257.

Console, R., Chiappini, M., Minelli, L., Speranza, F., Carluccio, R., Greco, M. (2018a). Seismic hazard in southern Calabria (Italy) based on the analysis of a synthetic earthquake catalog. Acta Geophysica, 66, 931–943.

Console, R., Vannoli, P., Carluccio, R. (2018b). The seismicity of the Central Apennines (Italy) studied by means of a physics-based earthquake simulator. Geophys. J. Int., 212, 916–929.

Dieterich, J.H. (1994). A constitutive law for rate of earthquake production and its application to earthquake clustering. J. Geophys. Res., 99, 2601–2618.

Dieterich, J.H. and Richards-Dinger, K.B. (2010). Earthquake recurrence in simulated fault systems. Pure Appl. Geophys., 167, 1087–1104.

Dieterich, J.H., Richards-Dinger, K.B., Kroll, K.A. (2015). Modeling injection-induced seismicity with the physiscs-based earthquake simulator RSQSim. Seism. Res. Lett., 86(4), 1–8.

Field, E.H. (2015). Computing elastic-rebound motivated earthquake probabilities in unsegmented fault models: A new methodology supported by physics-based simulators. Bull. Seism. Soc. Am., 105(2A), 544–559.

Field, E.H. (2019). How physics-based earthquake simulators might help improve earthquake forecasts. Seism. Res. Lett., 9.

Goes, S.D.B. and Ward, S.N. (1994). Synthetic seismicity for the San Andreas Fault. Ann. Geophys., 37, 1495–1513.

Gulia, L. and Wiemer, S. (2019). Real-time discrimination of earthquake foreshocks and aftershocks. Nature, 574(7777), 193–199 [Online]. Available at: doi: 10.1038/s41586-019- 1606-4 [Accessed 9 October 2019].

Gulia, L., Tormann, T., Wiemer, S., Hermann, M., Seif, S. (2016). Short-term probabilistic earthquake risk assessment considering time-dependent b-values. Geoph. Res. Lett, 43(3), 1100–1108.

Khodaverdian, A., Zafarani, H., Rahimian, M. (2016a). Using a physics-based earthquake simulator to evaluate seismic hazard in NW Iran. Geophys J. Int., 206(379–394), 2624–2639.

Khodaverdian, A., Zafarani, H., Schultz, K.W., Rahimian, M. (2016b). Recurrence time distributions of large earthquakes in Eastern Iran. Bull. Soc. Seismol. Am., 106(6), 2624–2639.

Mele, F.M., Marcocci, C., Bono, A., Marchetti, A. (2010). ISIDe, Italian Seismological Instrumental and parametric Data-base. INGV, CNT [Online]. Available at: http://iside.rm.ingv.it/iside/standard/index.jsp.

Montuori, C., Murru, M., Falcone, G. (2016). Spatial variation of the b-value observed for the periods preceding and following the 24 August 2016, amatrice earthquake (ml6.0) (Central Italy). Annals of Geophysics, 5, 2016.

Mosca, I., Console, R., D’Addezio, G. (2012). Renewal models of seismic recurrence applied to paleoseismological and historical observations. Tectonophysics, 564, 54–67.

Parsons, T. and Geist, E.L. (2009). Is there basis for preferring characteristic earthquakes over Gutenberg–Richter distributions on individual faults in probabilistic earthquake forecasting? Bull. Seismol. Soc. Am., 99, 0120080069.

Parsons, T., Console, R., Falcone, G., Murru, M., Yamashina, K. (2013). Comparison of characteristic and Gutenberg–Richter models for time-dependent M ≥ 7.9 earthquake probability in the Nankai–Tokai subduction zone. Japan. Geophys. J. Int, 190(3),1673–1688.

Parsons, T., Geist, E.L., Console, R., Carluccio, R. (2018). Characteristic earthquake magnitude frequency distributions on faults calculated from consensus data in california. J. Geoph. Res., 123(12), 761–10.

Pollitz, F.F. (2011). Epistemic uncertainty in California-wide synthetic seismicity simulations. Bull. Seismol. Soc. Am., 101, 2481–2498.

Pollitz, F.F. (2012). Viscosim earthquake simulator. Seismol. Res. Lett., 83, 979–982.

Pollitz, F.F. and Schwartz, D. (2008). Probabilistic seismic hazard in the San Francisco Bay area based on a simplified viscoelastic-cycle model of fault interactions. J. Geophys. Res., 113.

Reid, H.F. (1910). The mechanics of the California earthquake of April 18, 1906, report of the State Investigation Commission, vol. 2. Technical Report, Carnegie Institution of Washington, Washington, DC.

Richards-Dinger, K.B. and Dieterich, J.H. (2012). RSQSim earthquake simulator. Seismol. Res. Lett., 83(6), 983–990.

Rovida, A., Camassi, R., Gasperini, P., Stucchi, M. (2011). CPTI11, 2011 version, Parametric Catalogue of Italian Earthquakes. INGV, Milan, Bologna [Online]. Available at: http://emidius.mi.ingv.it/CPTI11.

Rundle, J.B. and Brown, S. (1991). Origin of rate dependence in frictional sliding. J. Stat. Phys., 65(1), 403–412.

Rundle, J.B. and Jackson, D.D. (1977). Numerical simulation of earthquake sequences. Bull. Seismol. Soc. Am., 87, 1363–1377.

Rundle, J.B., Rundle, P.B., Tiampo, K.F., Donnellan, A., Klein, W., de san Martins, J., Kellogg, L.H. (2002). Gem plate boundary simulations for the Plate Boundary Observatory: A program for understanding the physics of earthquakes on complex fault networks via observations, theory and numerical simulations. In Earthquake Processes: Physical Modelling, Numerical Simulation & Data Analysis, Matsu’ura, M., Mora, P., Donnellan, A., Yin, X.-c (eds). Springer, Basel.

Rundle, J.B., Rundle, P.B., Donnellan, A., Turcotte, D.L., Scherbakov, R., Li, P., Malamud, B.D., Grant, L.B., Fox, G.C., McLeod, D., Yakovlev, G., Parker, J., Klein, W., Klein, W., Tiampo, K.F. (2005). A simulation-based approach to forecasting the next great San Francisco earthquake. Proc. Natl. Acad. Sci., 102(43), 15363–15367.

Rundle, P., Rundle, J., Tiampo, K., Donnellan, A., Turcotte, D.L. (2006). Virtual California: Fault model, frictional parameters, applications. In Computational Earthquake Physics. Simulations, Analysis and Infrastructure, Part I. Pageoph Topical Volumes, Yin, P., Mora, X., Donnellan, A., Matsu’ura, M. (eds). Birkhäuser, Basel.

Sachs, M.K., Heien, E.M., Turcotte, D.L., Yikilmaz, M.B., Rundle, J.B., Kellogg, L.H. (2012). Virtual California earthquake simulator. Seism. Res. Lett., 83(6), 973–978.

Schultz, K.W. and Wilson, J. (2015). An introduction to virtual quake. CIG Webimar, University of California, Department of Physics – Rundle Group, December 3.

Schultz, K.W., Sachs, M., Yoder, M.R., Rundle, J.B., Turcotte, D.L., Helen, E.M., Donnellan, A. (2015). Virtual quake: Statistics. In Co-seismic Deformations and Gravity Changes for Driven Earthquake Fault Systems, International Symposium on Geodesy for Earthquake and Natural Hazards (GENAH), Hashimoto, M. (ed.). International Association of Geodesy Symposia 145. Springer, Cham.

Schultz, K.W., Yoder, M.R., Wilson, J.M., Heien, E.M., Scahs, M.K., Rundle, J.B., Turcotte, D.L. (2017). Parametrizing physics-based earthquake simulations. Pure Appl. Geophys., 174, 2269–2278.

Shaw, B.E. (2019). Beyond backslip: Improvement of earthquake simulators from new hybrid loading conditions. Bull. Seismol. Soc. Am., 109, 6 [Online]. Available at: https://doi.org/10.1785/0120180128.

Shaw, B.E., Milner, K.V., Field, E.H., Richards-Dinger, K.B., Gilchrist, J.J., Dieterich, J.H., Jordan, T.H. (2018). A physics-based earthquake simulator replicates seismic hazard statistics across California. Sci. Adv., 4, 8.

Toda, S., Stein, R.S., Reasenberg, P.A., Dieterich, J.H., Yoshida, A. (1998). Stress transferred by the 1995 mw = 6.9 Kobe, Japan, shock: Effect on aftershocks and future earthquake probabilities. J. Geophys. Res., 103(B10), 24543–24565.

Toda, S., Stein, R.S., Richards-Dinger, K.B., Bozkurt, S. (2005). Forecasting the evolution of seismicity in Southern California: Animations built on earthquake stress transfer. J. Geophys. Res., 110, B05S16.

Tullis, T.E. (2012). Preface to the focused issue on earthquake simulators. Seism. Res. Lett., 83(6), 957–958.

Tullis, T.E., Richards-Dinger, K.B., Barall, M., Dieterich, J.H., Field, E.H., Heien, E.M., Kellogg, L.H., Pollitz, E.F., Rundle, J.B., Sachs, M.K., Turcotte, D.L., Ward, S.N., Yikilmaz, M.B. (2012a). Comparison among observations and earthquake simulator results for ALLCAL2 California fault model. Seismol Res. Lett., 83(6), 994–1006.

Tullis, T.E., Richards-Dinger, K.B., Barall, M., Dieterich, J.H., Field, E.H., Heien, E.M., Kellogg, L.H., Pollitz, E.F., Rundle, J.B., Sachs, M.K., Turcotte, D.L., Ward, S.N., Yikilmaz, M.B. (2012b). Generic earthquake simulator. Seismol Res. Lett., 83(6), 959–963.

Ward, S.N. (1992). An application of synthetic seismicity in earthquake statistics: The Middle America Trench. J. Geophys. Res., 97, 6675–6682.

Ward, S.N. (1996), A synthetic seismicity model for southern California: Cycles, probability and hazard, J. Geophys. Res., 101, 2293–22418.

Ward, S.N. (2000). San Francisco Bay area earthquake simulations: A step towards a standard physical earthquake model. Bull. Seismol. Soc. Am., 90(2), 370–386.

Ward, S.N. (2012). ALLCAL earthquake simulator. Seismol. Res. Lett., 83(6), 964–972.

WGCEP (2003). Earthquake probabilities in the San Francisco Bay region: 2002–2031. Technical Report, USGS Open File Report 03-214. Working Group on California Earthquake Probabilities.

WGCEP (2008). Working group on California earthquake probabilities, the uniform California earthquake rupture forecast, version 2 (ucerf 2). Technical Report, USGS Open File Report 2007–1437, CGS Special Report 203, SCEC Contribution n.1138, Version 1.0. WGCEP, 104.

Wilson, J.M., Yoder, M.R., Rundle, J.B., Turcotte, D.L., Schultz, K.W. (2017). Spatial evaluation and verification of earthquake simulators. Pure App. Geophys., 174, 2279–2293.

Xu, H., Cui, Y., Dieterich, J.H., Richards-Dinger, K.B., Poyraz, E., Choi, D.J. (2014). Aftershock sequence simulations using synthetic earthquakes and rate-state seismicity formulation. Earthq. Sci., 27(4), 401–410.

Yikilmaz, M.B., Turcotte, D.L., Yakovlev, G., Rundle, J.B., Kellogg, L.H. (2011). Virtual California earthquake simulations: Simple models and their application to an observed sequence of earthquakes. Geophys. J. Int., 180, 734–742.

Yoder, M.R., Schultz, K.W., Heien, E.M., Turcotte, J.B., Parker, W.D.L., Donnellann, A. (2015). The virtual quake earthquake simulator: A simulation-based forecast of the el Mayor- Cucapah region and evidence of predictability in simulated earthquake sequences. Geophys. J. Int., 203, 1587.

Statistical Methods and Modeling of Seismogenesis

Подняться наверх