Читать книгу The Wonders of Life: A Popular Study of Biological Philosophy - Ernst Haeckel - Страница 9

THE SCIENCE OF LIFE

Оглавление

Table of Contents

Object of biology—Relation to the other sciences—General and special biology—Natural philosophy—Monism: hylozoism, materialism, dynamism—Naturalism—Nature and spirit—Physics—Metaphysics—Dualism—Freedom and natural law—God in biology—Realism—Idealism—Branches of biology—Morphology and physiology—Anatomy and biogeny—Ergology and perilogy.

The broad realm of science has been vastly extended in the course of the nineteenth century. Many new branches have established themselves independently; many new and most fruitful methods of research have been discovered, and have been applied with the greatest practical success in furthering the advance of modern thought. But this enormous expansion of the field of knowledge has its disadvantages. The extensive division of labor it has involved has led to the growth of a narrow specialism in many small sections; and in this way the natural connection of the various provinces of knowledge, and their relation to the comprehensive whole, have been partly or wholly lost sight of. The importation of new terms which are used in different senses by one-sided workers in the various fields of science has caused a good deal of misunderstanding and confusion. The vast structure of science tends more and more to become a tower of Babel, in the labyrinthic passages of which few are at their ease and few any longer understand the language of other workers. In these circumstances, it seems advisable, at the commencement of our philosophic study of "the wonders of life," to form a clear idea of our task. We must carefully define the place of biology among the sciences, and the relation of its various branches to each other and to the different systems of philosophy.

In the broadest sense in which we can take it, biology is the whole study of organisms or living beings. Hence not only botany (the science of plants) and zoology (the science of animals), but also anthropology (the science of man), fall within its domain. We then contrast with it all the sciences which deal with inorganic or lifeless bodies, which we may collectively call abiology (or anorganology); to this belong astronomy, geology, mineralogy, hydrology, etc. This division of the two great branches of science does not seem difficult in view of the fact that the idea of life is sharply defined physiologically by its metabolism and chemically by its plasm; but when we come to study the question of abiogenesis (chapter xv.) we shall find that this division is not absolute, and that organic life has been evolved from inorganic nature. Moreover, biology and abiology are connected branches of cosmology, or the science of the world.

While the idea of biology is now usually taken in this broad sense in most scientific works and made to embrace the whole of living nature, we often find (especially in Germany) a narrower application of the term. Many authors (mostly physiologists) understand by it a section of physiology—namely, the science of the relations of living organisms to the external world, their habitat, customs, enemies, parasites, etc. I proposed long ago to call this special part of biology œcology (the science of home-relations), or bionomy. Twenty years later others suggested the name of ethology. To call this special study any longer biology in the narrower sense is very undesirable, because it is the only name we have for the totality of the organic sciences.

Like every other science, biology has a general and a special part. General biology contains general information about living nature; this is the subject of the present study of the wonders of life. We might also describe it as biological philosophy, since the aim of true philosophy must be the comprehensive survey and rational interpretation of all the general results of scientific research. The innumerable discoveries of detailed facts which observation and experiment give us, and which are combined into a general view of life in philosophy, form the subject of empirical science. As the latter, on the side of the organic world, or as empirical biology, forms the first object of the science of life, and seeks to effect in the system of nature a logical arrangement and summary grouping of the countless special forms of life, this special biology is often wrongly called the science of classification.

The first comprehensive attempt to reduce to order and unity the ample biological material which systematic research had accumulated in the eighteenth century was made by what we call "the older natural philosophy" at the beginning of the nineteenth century. Reinhold Treviranus (of Bremen) had made a suggestive effort to accomplish this difficult task on monistic principles in his Biology, or Philosophy of Living Nature (1802). Special importance attaches to the year 1809, in which Jean Lamarck (of Paris) published his Philosophie Zoologique, and Lorentz Oken (of Jena) his Manual of Natural Philosophy. I have fully appreciated the service of Lamarck, the founder of the theory of descent, in my earlier writings. I have also recognized the great merit of Lorentz Oken, who not only aroused a very wide interest in this science by his General Natural History, but also put forward some general observations of great value. His "infamous" theory of a primitive slime, and the development of infusoria out of it, is merely the fundamental idea of the theory of protoplasm and the cell which was long afterwards fully recognized. These and other services of the older natural philosophy were partly ignored and partly overlooked, because they went far beyond the scientific horizon of the time, and their authors to an extent lost themselves in airy and fantastic speculations. The more scientists confined themselves in the following half-century to empirical work and the observation and description of separate facts, the more it became the fashion to look down on all "natural philosophy." The most paradoxical feature of the situation was that purely speculative philosophy and idealist metaphysics had a great run at the same time, and their castles in the air, utterly destitute of biological foundation, were much admired.

The magnificent reform of biology which Darwin initiated in 1859 by his epoch-making Origin of Species gave a fresh impulse to natural philosophy. As this work not only used the rich collection of facts already made in proof of the theory of descent, but gave it a new foundation in the theory of selection (Darwinism properly so called), everything seemed to call for the embodiment of the new conception of nature in a monistic system. I made the first effort to do this in my General Morphology (1866). As this found few supporters among my colleagues, I undertook in my History of Creation (1868) to make the chief points of the system accessible to the general reader. The remarkable success of this book (a tenth edition of it appearing in 1902) emboldened me at the end of the nineteenth century to state the general principles of my monistic philosophy in my Riddle of the Universe. About the same time (1899) there appeared the work of the Kiel botanist, Johannes Reinke, The World as Reality; and two years afterwards he followed it up with a supplementary volume, Introduction to Theoretic Biology. As Reinke treats the general problems of natural philosophy from a purely mystic and dualistic point of view, his ideas are diametrically opposed to my monistic and naturalistic principles.

The history of philosophy describes for us the infinite variety of ideas that men have formulated during the last three thousand years on the nature of the world and its phenomena. Überweg has given us, in his excellent History of Philosophy, a thorough and impartial account of these various systems. Fritz Schultze has published a clear and compendious "tabulated outline" of them in thirty tables in his genealogical tree of philosophy, and at the same time shown the phylogeny of ideas. When we survey this enormous mass of philosophic systems from the point of view of general biology, we find that we can divide them into two main groups. The first and smaller group contains the monistic philosophy, which traces all the phenomena of existence to one single common principle. The second and larger group, to which most philosophic systems belong, constitutes the dualistic philosophy, according to which there are two totally distinct principles in the universe. These are sometimes expressed as God and the world, sometimes as the spiritual world and material world, sometimes as mind and matter, and so on. In my opinion, this antithesis of monism and dualism is the most important in the whole history of philosophy. All other systems are only variations of one or the other of these, or a more or less obscure combination of the two.

The form of monism which I take to be the most complete expression of the general truth, and which I have advocated in my writings for thirty-eight years, is now generally called hylozoism. This expresses the fact that all substance has two fundamental attributes; as matter (hyle) it occupies space, and as force or energy it is endowed with sensation (cf. chapter xix.). Spinoza, who gave the most perfect expression to this idea in his "philosophy of identity," and most clearly treated the notion of substance (as the all-embracing essence of the world), clothes it with two general attributes—extension and thought. Extension is identical with real space, and thought with (unconscious) sensation. The latter must not be confused with conscious human thought; intelligence is not found in substance, but is a special property of the higher animals and man. Spinoza identifies his substance with nature and God, and his system is accordingly called pantheism; but it must be understood that he rejects the anthropomorphic, personal idea of deity.

A good deal of the infinite confusion that characterizes the conflicts of philosophers over their systems is due to the obscurity and ambiguity of many of their fundamental ideas. The words "substance" and "God," "soul" and "spirit," "sensation" and "matter," are used in the most different and changing senses. This is especially true of the word "materialism," which is often wrongly taken to be synonymous with monism. The moral bias of idealism against practical materialism (or pure selfishness and sensualism) is forthwith transferred to theoretical materialism, which has nothing to do with it; and the strictures which are justly urged against the one are most unjustifiably applied to the other. Hence it is important to distinguish very carefully between these two meanings of materialism.

Theoretical materialism (or hylonism), as a realistic and monistic philosophy, is right in so far as it conceives matter and force to be inseparably connected, and denies the existence of immaterial forces. But it is wrong when it denies all sensation to matter, and regards actual energy as a function of dead matter. Thus, in ancient times Democritus and Lucretius traced all phenomena to the movements of dead atoms, as did also Holbach and Lamettrie in the eighteenth century. This view is held to-day by most chemists and physicists. They regard gravitation and chemical affinity as a mere mechanical movement of atoms, and this, in turn, as the general source of all phenomena; but they will not allow that these movements necessarily presuppose a kind of (unconscious) sensation. In conversation with distinguished physicists and chemists I have often found that they will not hear a word about a "soul" in the atom. In my opinion, however, this must necessarily be assumed to explain the simplest physical and chemical processes. Naturally I am not thinking of anything like the elaborate psychic action of man and the higher animals, which is often bound up with consciousness; we must rather descend the long scale of the development of consciousness until we reach the simplest protists, the monera (chapter ix.). The psychic activity of these homogeneous particles of plasm (for instance, the chromacea) rises very little above that of crystals; as in the chemical synthesis in the moneron, so in crystallization we are bound to assume that there is a low degree of sensation (not of consciousness), in order to explain the orderly arrangement of the moving molecules in a definite structure.

The prejudice against theoretical materialism (or materialistic monism) which still prevails so much is partly due to its rejection of the three central dogmas of dualist metaphysics, and partly to a confusion of it with hedonism. This practical materialism in its extreme forms (as Aristippus of Cyrene and the Cyrenaic school, and afterwards Epicurus, taught it) finds the chief end of life in pleasure—at one time crude, sensual pleasure, and at others spiritual pleasure. Up to a certain point, this thirst for happiness and a pleasant and enjoyable life is innate in every man and higher animal, and so far just; it only began to be censured as sinful when Christianity directed the thoughts of men to eternal life, and taught them that their life on earth was only a preparation for the future. We shall see afterwards, when we come to weigh the value of life (chapter xvii.), that this asceticism is unjustifiable and unnatural. But as every legitimate enjoyment can become wrong by excess, and every virtue be turned into vice, so a narrow hedonism is to be condemned, especially when it allies itself with egoism. However, we must point out that this excessive thirst for pleasure is in no way connected with materialism, but is often found among idealists. Many convinced supporters of theoretical materialism (many scientists and physicians, for instance) lead very simple, blameless lives, and are little disposed to material pleasures. On the other hand, many priests, theologians, and idealist philosophers, who preach theoretical idealism, are pronounced hedonists in practice. In olden times many temples served at one and the same time for the theoretic worship of the gods and for practical excesses in the way of wine and love; and even in our day the luxurious and often vicious lives of the higher clergy (at Rome, for instance) do not fall far short of the ancient models. This paradoxical situation is due to the special attractiveness of everything that is forbidden. But it is utterly unjust to extend the natural feeling against excessive and egoistic hedonism to theoretical materialism and to monism. Equally unjust is the habit, still widely spread, of depreciating matter, as such, in favor of spirit. Impartial biology has taught us of late years that what we call "spirit" is—as Goethe said long ago—inseparably bound up with matter. Experience has never yet discovered any spirit apart from matter.

On the other hand, pure dynamism, now often called energism (and often spiritualism), is just as one-sided as pure materialism. Just as the latter takes one attribute of substance, matter, as the one chief cause of phenomena, dynamism takes its second attribute, force (dynamis). Leibnitz most consistently developed this system among the older German philosophers; and Fechner and Zöllner have recently adopted it in part. The latest development of it is found in Wilhelm Ostwald's Natural Philosophy (1902). This work is purely monistic, and very ingeniously endeavors to show that the same forces are at work in the whole of nature, organic and inorganic, and that these may all be comprised under the general head of energy. It is especially satisfactory that Ostwald has traced the highest functions of the human mind (consciousness, thought, feeling, and will), as well as the simplest physical and chemical processes (heat, electricity, chemical affinity, etc.), to special forms of energy, or natural force. However, he is wrong when he supposes that his energism is an entirely new system. The chief points of it are found in Leibnitz; and other Leipzig scientists, especially Fechner and Zöllner, had come very close to similar spiritualistic views—the latter going into outright spiritism. Ostwald's chief mistake is to take the terms "energy" and "substance" to be synonymous. Certainly his universal, all-creating energy is, in the main, the same as the substance of Spinoza, which we have also adopted in our "law of substance." But Ostwald would deprive substance of the attribute of matter altogether, and boasts of his Refutation of Materialism (1895). He would leave it only the one attribute, energy, and reduce all matter to immaterial points of force. Nevertheless, as chemist and physicist, he never gets rid of space-filling substance—which is all we mean by "matter"—and has to treat it and its parts, the physical molecules and chemical atoms (even if only conceived as symbols), daily as "vehicles of energy." Ostwald would reject even these in his pursuit of the illusion of a "science without hypotheses." As a fact, he is forced every day, like every other exact scientist, to assume and apply in practice the indispensable idea of matter, and its separate particles, the molecules and atoms. Knowledge is impossible without hypotheses.

Monism is best expressed as hylozoism, in so far as this removes the antithesis of materialism and spiritualism (or mechanicism and dynamism), and unites them in a natural and harmonious system. Our monistic system has been charged with leading to pure naturalism; one of its most vehement critics, Frederick Paulsen, attaches so much importance to this stricture that he thinks it as dangerous as dogmatic clericalism. We may, therefore, usefully consider the idea of naturalism, and point out in what sense we accept it and identify it with monism. The key to the position is in our monistic anthropogeny, our unprejudiced conviction, supported by every branch of anthropological research, of "man's place in nature," as we have established it in the first section of the Riddle (chapters ii.-v.). Man is a purely natural being, a placental mammal of the order of primates. He was phylogenetically evolved in the course of the Tertiary Period from a series of the lower primates (directly from the anthropoid apes, but earlier from the cynocephali and lemures). Savage man, as we have him to-day in the Veddah or Australian negro, is physiologically nearer to the apes than to highly civilized men.

Anthropology (in the widest sense) is only a particular branch of zoology, to which we must assign a special position on account of its extreme importance. Hence all the sciences which relate to man and his psychic activity—especially what are called the moral sciences—must be regarded from our monistic point of view as special branches of zoology and as natural sciences. Human psychology is inseparably connected with comparative animal psychology, and this again with that of the plants and protists. Philology studies in human speech a complicated natural phenomenon, which depends on the combined action of the brain-cells of the phronema, the muscles of the tongue, and the vocal cords of the larynx, as much as the cry of mammals and the song of birds do. The history of mankind (which we, in our curious anthropocentric mood, call the history of the world), and its highest branch, the history of civilization, is connected by modern prehistoric science directly with the stem-history of the primates and the other mammals, and indirectly with the phylogeny of the lower vertebrates. Hence, when we consider the subject without prejudice, we do not find a single branch of human science that passes the limits of natural science (in the broadest sense), any more than we find nature herself to be supernatural.

Just as monism, or naturalism, embraces the totality of science, so on our principles the idea of nature comprises the whole scientifically knowable world. In the strict monistic sense of Spinoza the ideas of God and Nature are synonymous for us. Whether there is a realm of the supernatural and spiritual beyond nature we do not know. All that is said of it in religious myths and legends, or metaphysical speculations and dogmas, is mere poetry and an outcome of imagination. The imagination of civilized man is ever seeking to produce unified images in art and science, and when it meets with gaps in these in the association of ideas it endeavors to fill them with its own creations. These creations of the phronema with which we fill the gaps in our knowledge are called hypotheses when they are in harmony with the empirically established facts, and myths when they contradict the facts: this is the case with religious myths, miracles, etc. Even when people contrast mind with nature, this is only a result, as a rule, of similar superstitions (animism, spiritism, etc.). But when we speak of man's mind as a higher psychic function, we mean a special physiological function of the brain, or that particular part of the cortex of the brain which we call the phronema, or organ of thought. This higher psychic function is a natural phenomenon, subject, like all other natural phenomena, to the law of substance. The old Latin word natura (from nasci, to be born) stands, like the corresponding Greek term physis (from phyo—to grow), for the essence of the world as an eternal "being and becoming"—a profound thought! Hence physics, the science of the physis, is, in the broadest sense of the word, "natural science."

The extensive division of labor which has taken place in science, on account of the enormous growth of our knowledge in the nineteenth century and the rise of many new disciplines, has very much altered their relations to each other and to the whole, and has even given a fresh meaning and connotation to the term. Hence by physics, as it is now taught at the universities, is usually understood only that part of inorganic science which deals with the molecular relations of substance and the mechanism of mass and ether, without regard to the qualitative differences of the elements, which are expressed in the atomic weight of their smallest particles, the atoms. The study of the atoms and their affinities and combinations belongs to chemistry. As this province is very extensive and has its special methods of research, it is usually put side by side with physics as of equal importance; in reality, however, it is only a branch of physics—chemistry is the physics of the atoms. Hence, when we speak of a physico-chemical inquiry or phenomenon, we might justly describe it briefly as physical (in the wider sense). Physiology, again, a particularly important branch of it, is in this sense the physics of living things, or the physico-chemical study of the living body.

Since Aristotle dealt with the eternal phenomena of nature in the first part of his works, and called this physics, and with their inner nature in the second part, to which he gave the name of metaphysics, the two terms have undergone many and considerable modifications. If we restrict the term "physics" to the empirical study of phenomena (by observation and experiment), we may give the name of metaphysics to every hypothesis and theory that is introduced to fill up the gaps in it. In this sense the indispensable theories of physics (such as the assumption that matter is made up of molecules and atoms and electrons) may be described as metaphysical; such also is our assumption that all substance is endowed with sensation as well as extension (matter). This monistic metaphysics, which recognizes the absolute dominion of the law of substance in all phenomena, but confines itself to the study of nature and abandons inquiry into the supernatural, is, with all its theories and hypotheses, an indispensable part of any rational philosophy of life. To claim, as Ostwald does, that science must be free from hypotheses is to deprive it of its foundations. But it is very different with the current dualistic metaphysics, which holds that there are two distinct worlds, and which we find in a hundred forms as philosophic dualism.

If we understand by metaphysics the science of the ultimate ground of things, springing from the rational demand for causes, it can only be regarded, from the physiological point of view, as a higher and late-developed function of the phronema. It could only arise with the complete development of the brain in civilized man. It is completely lacking among savages, whose organ of thought rises very little above that of the most intelligent animals. The laws of the psychic life of the savage have been closely studied by modern ethnology. It teaches us that the higher reason is not found in savages, and that their power of abstract thought and of forming concepts is at a very low level. Thus, for instance, the Veddahs, who live in the forests of Ceylon, have not the general idea of trees, though they know and give names to individual trees. Many savages cannot count up to five; they never reflect on the ground of their existence or think of the past or future. Hence it is a great error for Schopenhauer and other philosophers to define man as a "metaphysical animal," and to seek a profound distinction between man and the animal in the need for a metaphysic. This craving has only been awakened and developed by the progress of civilization. But even in civilized communities it (like consciousness) is not found in early youth, and only gradually emerges. The child has to learn to speak and think. In harmony with our biogenetic law, the child reproduces in the various stages of its mental development the whole of the gradations which lead from the savage to the barbarian, and from the barbarian to the half-civilized, and on to the fully educated man. If this historical development of the higher human faculties had always been properly appreciated, and psychology had been faithful to the comparative and genetic methods, many of the errors of the current metaphysical systems would have been avoided. Kant would not then have produced his theory of a priori knowledge, but would have seen that all that now seems to be a priori in civilized man was originally acquired by a posteriori experiences in the long evolution of civilization and science. Here we have the root of the errors which are distinctive of dualism and the prevailing metaphysical transcendentalism.

Like all science, biology is realistic—that is to say, it regards its object, the organisms, as really existing things, the features of which are to an extent knowable through our senses (sensorium) and organ of thought (phronema). At the same time, we know that these cognitive organs, and the knowledge they bring us, are imperfect, and that there may be other features of organisms that lie beyond our means of perception altogether. But it by no means follows from this that, as our idealist opponents say, the organisms (and all other things) exist only in our mind (in the images in our cortex). Our pure monism (or hylozoism) agrees with realism in recognizing the unity of being of each organism, and denying that there is any essential distinction between its knowable phenomenon and its internal hidden essence (or noumenon), whether the latter be called, with Plato, the eternal "idea," or, with Kant, the "thing in itself." Realism is not identical with materialism, and may even be definitely connected with the very opposite, dynamism or energism.

As realism generally coincides with monism, so idealism is usually identical with dualism. The two most influential representatives of dualism, Plato and Kant, said that there were two totally distinct worlds. Nature, or the empirical world, is alone accessible to our experience, while the spiritual or transcendental world is not. The existence of the latter is known to us only by the emotions or by practical reason; but we can have no idea of its nature. The chief error of this theoretical idealism is the assumption that the soul is a peculiar, immaterial being, immortal and endowed with a priori knowledge. The physiology and ontogeny of the brain (together with the comparative anatomy and histology of the phronema) prove that the soul of man is, like that of all other vertebrates, a function of the brain, and inseparably bound up with this organ. Hence this idealist theory of knowledge is just as inconsistent with realistic biology as is the psycho-physical parallelism of Wundt or the psychomonism of more recent physiologists, which in the end issues in a complete dualism of body and mind. It is otherwise with practical idealism. When this presents the symbols or ideals of a personal God, an immortal soul, and the free-will as ethical stimuli, and uses them for their pedagogical worth in the education of the young, it may have a good influence for a time, which is independent of their theoretical untenability.

The many branches of biology which have been developed independently in the course of the nineteenth century ought to remain in touch with one another, and co-operate with a clear apprehension of their task, if they are to attain their high purpose of framing a unified science embracing the whole field of organic life. Unfortunately, this common aim is often lost sight of in the specialization of study; the philosophical task is neglected in favor of the empirical. The confusion that has ensued makes it desirable to determine the mutual positions of the various biological disciplines. I went into this somewhat fully in my academic speech on the development and aim of zoology in 1869. But as this essay is little known, I will briefly resume the chief points of it.

In correspondence with the long-established distinction between the plant and the animal, the two chief branches of biology, zoology and botany, have developed side by side, and are represented by two different chairs in the universities. Independently of these, there arose at the very beginning of scientific activity that field of inquiry which deals with human life in all its aspects—the anthropological disciplines and the so-called "mental sciences" (history, philology, psychology, etc.). Since the theory of descent has proved man's origin from vertebrate ancestors, and thus anthropology has been recognized as a part of zoology, we have begun to understand the inner historic connection between these various branches of anthropology, and to combine them in a comprehensive science of man. The immense extent and the great importance of this science have justified the creation of late years of special chairs of anthropology. It seems desirable to do the same for the science of the protists, or unicellular organisms. The cell theory, or cytology, as an elementary part of anatomy, has to be dealt with in both botany and zoology; but the lowest unicellular representatives of both kingdoms, the primitive plants (protophyta) and the primitive animals (protozoa), are so intimately connected, and throw so great a light, as independent rudimentary organisms, on the tissue cells in the histon, or multicellular organism, that we must regard as a sign of progress the recent proposal of Schaudinn to found a special institute and journal for the science of protists. One very important section of it is bacteriology.

The practical division of biology, according to the extent of the organic kingdom, leads us to mark out four chief provinces of research: protistology (the science of the unicellulars), botany (the science of plants), zoology (the science of animals), and anthropology (the science of man). In each of these four fields we may then distinguish morphology (the science of forms) and physiology (the science of functions) as the two chief divisions of scientific work. The special methods and means of observation differ entirely in the two sections. In morphology the work of description and comparison is the most important as regards both outer form and inner structure. In physiology the exact methods of physics and chemistry are especially demanded—the observation of vital activities and the attempt to discover the physical laws that govern them. As a correct knowledge of human anatomy and physiology is indispensable for scientific medicine, and the work requires a particularly large apparatus, these two sciences have long been studied separately, and have been handed over to the medical facility in the division of the academic curriculum.

The broad field of morphology may be divided into anatomy and biogeny; the one deals with the fully developed, and the other with the developing, organism. Anatomy, the study of the formed organism, studies both the external form and the inner structure. We may distinguish as its two branches the science of structures (tectology) and the science of fundamental forms (promorphology). Tectology investigates the features of the structure in the organic individual, and the composition of the body out of various parts (cells, tissues, and organs). Promorphology describes the real form of these individual parts and of the whole body, and endeavors to reduce them mathematically to certain fundamental forms (chapter viii.). Biogeny, or the science of the evolution of organisms, is also divided into two parts—the science of the individual (ontogeny) and of the stem or species (phylogeny); each follows its own peculiar methods and aims, but they are most intimately connected by the biogenetic law. Ontogeny deals with the development of the individual organism from the beginning of its existence to death; as embryology it observes the growth of the individual within the fœtal membranes; and as metamorphology (or the science of metamorphoses) it follows the subsequent changes in post-fœtal life (chapter xvi.). The task of phylogeny is to trace the evolution of the organic stem or species—that is to say, of the chief divisions in the animal and plant worlds, which we describe as classes, orders, etc.; in other words, it traces the genealogy of species. It relies on the facts of paleontology, and fills up the gaps in this by comparative anatomy and ontogeny.

The science of the vital phenomena, which we call physiology, is for the most part the physiology of work, or ergology; it investigates the functions of the living organism, and has to reduce them as closely as possible to physical and chemical laws. Vegetable ergology deals with what are called the vegetative functions, nutrition and reproduction; animal ergology studies the animal activities of movement and sensation. Psychology is directly connected with the latter. But the study of the relations of the organism to its environment, organic and inorganic, also belongs to physiology in the wider sense; we call this part of it perilogy, or the physiology of relations. To this belong chorology, or the science of distribution (also called biological geography, as it deals with geographical and topographical distribution), and œcology or bionomy (also recently called ethology), the science of the domestic side of organic life, of the life-needs of organisms and their relations to other organisms with which they live (biocenosis, symbiosis, parasitism).

Third Table

SYNOPSIS OF THE CHIEF BRANCHES OF BIOLOGY (1869)

Biology = The Science of Life

I. Protistology = the science of single cells—unicellular organisms. The four chief branches of systematic biology.
II. Botany = the science of plants—tissue plants (metaphyta).
III. Zoology = the science of animals—tissue animals (metazoa).
IV. Anthropology = the science of man—speaking primates.
A. Morphology = The Science of Forms. Anatomy and biogeny of organisms.
A I. Anatomy. The science of structure. 1. Tectology. The science of structure.Cytology, science of cells. Histology, science of tissues. Organology, science of organs. Blastology, science of persons. Kormology, science of trunks.—— 2. Promorphology.The science of fundamental forms. Knowledge of the geometrical ideal forms (mathematically definable) in relation to the concrete real form of the individual. A II. Biogeny. The science of development. 3. Phylogeny. Stem history.Paleontology and genealogy. Transformism or theory of descent. Natural classification.—— 4. Ontogeny. 4a. Embryology. (Development within the fœtal membranes.) 4b. Metamorphology. (Modification of the organism after fœtal life.)
B. Physiology = The Science of Functions. Physics and chemistry of the organism.
B I. Ergology. 5. Vegetal ergology. Physiology of the vegetative functions. 5a. Trophonomy. The science of metabolism. 5b. Gonimatology. The science of reproduction. —— 6. Animal ergology. The science of movement. 6a. Phoronomy. The science of movement. 6b. Sensonomy. The science of sensation 6c. Psychology. B II. Perilogy. Physiology of relations. 7. Chorology.The science of distribution. Biological geography and topography. The science of migrations.—— 8. Œcology. (or bionomy or ethology). The science of domestic life. Biological economy.Relations of the organism to the environment, and to other organisms with which it lives.

V

The Wonders of Life: A Popular Study of Biological Philosophy

Подняться наверх