Читать книгу El arte de la composición Enriquece tu mirada fotográfica - Fran Nieto - Страница 44

La sección áurea en la Naturaleza

Оглавление

Puede parecer que el número áureo es una curiosidad matemática. Es lógico pensar que es un mero pasatiempo sin ningún interés práctico. No obstante, si observamos el mundo que nos rodea podemos llegar a la conclusión de que la importancia histórica de este número está realmente basada en el mundo real y que no es una creación humana, sino que simplemente hemos sido capaces de percibir su existencia. Lo mismo sucede con la sucesión de Fibonacci. A partir de la proporción áurea se consigue una espiral logarítmica frecuente en la Naturaleza.

Estudios como los del Dr. Fechner demostraron que nuestra percepción de la belleza se incrementa al aproximarnos a la proporción áurea. Esta noción de belleza y perfección es aplicable a estructuras arquitectónicas, pinturas, partituras musicales, fractales y personas.



Los girasoles tienen espirales que rotan hacia la derecha y hacia la izquierda. Su número está dentro de la serie de Fibonacci, 21 y 34. La Naturaleza ha encontrado así un modo eficaz de evitar que las nuevas hojas bloqueen la luz a las viejas, sin importar lo que crezca la planta. Es una elegante solución de empaquetado que obtiene su máxima eficacia cuando el ángulo de rotación de las hojas corresponde a la fracción decimal del número áureo (0,61803). También es la mejor manera de optimizar la superficie de exposición a la lluvia.

Incliné mucho la cámara para conseguir que la marcada línea visual que forman las nubes atravesase el centro de la flor, facilitando la visualización y proporcionando un fuerte dinamismo.

Óptica macro de 105 mm 1:2.8 a f/6,7 durante 1/125 s con ISO 100.

En los violines, la ubicación de las efes (los orificios que tiene en la tapa) se relaciona con el número áureo. También lo encontramos en la estructura de los cristales, en la espiral de las galaxias y en la concha del nautilo.

Igualmente en la distribución de las hojas en un tallo, la disposición de los pétalos de las flores y la relación entre las nervaduras de las hojas de los árboles. También la relación entre el grosor de las ramas principales y el tronco, o entre las ramas principales y las secundarias (el grosor de una equivale a Φ tomando como unidad la rama superior). La cantidad de pétalos en las flores sigue a Fibonacci, así existen flores con 3, 5 y 8 pétalos y también con 13, 21, 34, 55, 89 y 144. Lo mismo sucede con la cantidad de espirales de una piña (ocho y trece espirales), flores o inflorescencias.

El arte de la composición Enriquece tu mirada fotográfica

Подняться наверх