Читать книгу Fundamentos de visión binocular - Francisco M. Martínez Verdú - Страница 8

Оглавление

1. La visión binocular

1.1 El sentido espacial de la percepción

La visión se puede entender como la interpretación del mundo exterior mediante sistemas internos de codifcación y representación a través de la extracción de la información contenida en las imágenes retinianas. Este libro se centra en el uso coordinado, tanto en el nivel motor como sensorial, de los dos ojos para dar lugar a una impresión mental simple del entorno que nos rodea. Por tanto, el objetivo fundamental de la visión binocular es la interpretación fdedigna de nuestro entorno en una única imagen perceptual a partir de las dos imágenes retinianas. Esta interpretación nos permite orientarnos dentro del entorno físico que nos rodea y detectar la posición espacial de un objeto, tanto su dirección como su distancia.

Si bien es verdad que viendo con un solo ojo tenemos sentido espacial, éste no es tan bueno como el que se obtiene con los dos ojos abiertos. Por ejemplo, si mantenemos recto un bolígrafo con una mano delante de nuestra cara con un solo ojo abierto, al intentar tocar rápidamente su extremo con el índice de la otra mano libre con el brazo alzado, nunca lo conseguiremos; en cambio, con los dos ojos abiertos sí. Esto pone de manifiesto que la coordinación dedo-cerebro no es la misma nutriéndose de la información que recibe de un solo ojo, que si lo hace de los dos. Por tanto, este sencillo ejemplo nos muestra cómo la visión binocular debe aportar algunas ventajas perceptuales con respecto a la visión monocular. Veremos a lo largo del libro, entre otros aspectos, cuáles son.

1.2 El espacio visual

En principio, se debe presuponer que la representación e interpretación visual del espacio físico debe ser lo más fidedigna posible. Sin embargo, muchos investigadores se han planteado qué tipo de espacio es, matemáticamente hablando, el espacio visual. Esta pregunta es de gran importancia, ya que la medida de distancias en el espacio visual dependerá en gran medida de la métrica del espacio visual. Las diferencias entre una métrica euclídea (la que utiliza un arquitecto o un ingeniero civil) o no euclídea se traducirán en que la medida de distancias en el espacio visual será más o menos parecida a la que se da en el espacio físico. En ese sentido, las primeras experiencias se llevaron a cabo en 1913 (Regan 1991), siendo Blumenfeld el primero en hacer una experiencia en este sentido: la alineación al nivel de los ojos de dos grupos de puntos paralelos. El resultado fue que, cuando el observador los consideraba paralelos, los puntos estaban orientados de forma diferente, tal y como se ve en la fig. 1.1. Por tanto, el espacio visual binocular no es euclídeo.


Fig. 1.1 Experiencia de Blumenfeld.

Experiencias más precisas, como las realizadas por Foley en 1972 e Higashiyama en 1984 demostraron que la métrica del espacio visual binocular no es homogénea en todas las direcciones. En estas experiencias, los observadores debían construir figuras rectangulares, como triángulos rectángulo y cuadrados (fig. 1.2), obteniendo figuras deformadas en el espacio físico que se interpretaban como figuras rectas en el espacio visual.


Fig. 1.2 Experiencias de Foley (arriba) e Higashiyama (abajo).

1.3 Evolución de la visión binocular

Existen importantes diferencias entre los sistemas visuales de las diversas especies, motivadas por los diferentes caminos evolutivos que éstas han seguido. Así, para las especies herbívoras, la principal necesidad es la detección de peligro, que se cubre si se tiene un campo visual lo más amplio posible. Para obtener este campo visual máximo, los ojos se colocan lateralmente, dando 360º de campo visual pero sin apenas solapamiento de los mismo (fig. 1.3). Sin embargo, en las especies cazadoras, más evolucionadas, se precisa una visión que permita detectar la distancia a la que están las presas, lo que deriva en una posición frontal de los ojos que provoque en un solapamiento de los campos visuales monoculares que den lugar a la visión binocular.


Fig. 1.3 Campos visuales monocular y binocular del conejo (izquierda) y del gato (derecha).

Estas diferencias se extienden también a aspectos fisiológicos. En el quiasma óptico se produce un cruce entre la información que proviene de los ojos y se dirige al cerebro. En los animales inferiores, la decusación o cruce es total, de forma que no existe superposición de la información. Sin embargo, en los mamíferos se produce una decusación parcial que se conoce como semidecusación quiasmática, que permite que la información de ambos ojos sea combinada (fig. 1.4). Esto acarrea consigo, entre otras cosas, que la parte izquierda del espacio físico se analiza sensorialmente en el cerebro derecho, y la parte derecha en el cerebro izquierdo. Por tanto, una lesión irreversible en el córtex visual derecho provocaría una ceguera en todo el espacio físico izquierdo.


Fig. 1.4 Esquema de los caminos visuales con la aparición de la semidecusación quiasmática (Artigas, et al., 1995).

1.4 Condiciones para la visión binocular

Se deben verificar cuatro condiciones básicas por orden de prioridad para que exista visión binocular:

1. Los dos campos visuales monoculares deben solaparse en una región suficientemente amplia para obtener un campo binocular extenso, como ocurre en las especies carnívoras (fig. 1.3).

2. Los ojos deben moverse de forma coordinada para que los ejes visuales se crucen sobre un mismo punto de fijación, permitiendo que las imágenes se formen sobre áreas simétricas en las retinas de los dos ojos (fig. 1.5).


Fig. 1.5 Esquema de alineación de los ejes visuales de ambos ojos para conseguir la fijación bifoveal: el punto de fijación F se proyecta simultáneamente en las dos fóveas.

3. La información recibida en ambas retinas debe transmitirse a regiones asociadas del córtex visual, es decir, que se mantenga la correspondencia retiniana a lo largo de los caminos visuales de procesado de la información visual. Por ejemplo, en la fig. 1.6, se puede apreciar cómo las dos fóveas (símbolos claros) tienen en común el punto de fijación F por lo que las rutas neurales asociadas a estos puntos retinianos se agrupan en columna en el cuerpo geniculado lateral (CGL) para salir conjuntamente hacia el córtex visual. Pero esto mismo se da también para cualquier par de puntos retinianos (símbolos oscuros) en ambos ojos que tengan en común el mismo punto proyectado en el espacio objeto. Decimos, por tanto, que tanto las dos fóveas, como el otro par de puntos de la figura, son puntos retinianos correspondientes.


Fig. 1.6 Esquema sobre el mantenimiento de la correspondencia retiniana gracias a la semidecusación quiasmática. Los símbolos claros son las dos fóveas, que serían correspondientes o simétricas; los símbolos oscuros son un par de puntos retinianos correspondientes asociados a un punto del campo visual que no es de fijación (T); los símbolos cuadrados representan los centros de rotación de los globos oculares. Nótese cómo las rutas neurales que salen de los símbolos oscuros van a parar a la misma columna del cuerpo geniculado lateral (Reading, 1983).

4. El cerebro debe tener la capacidad de fusionar las imágenes neurales obteniendo una representación única. Es decir, utilizando simbolismo matemático:


En definitiva, que exista alguna función neural/que, partiendo de las dos imágenes retinianas izquierda y derecha, permita crear una sola imagen final que sea el resultado de una superpositión o fusión de las dos imágenes retinianas. Para ejecutar óptimamente este proceso de fusión neural, es mejor que desde lo más temprano posible se agrupen las rutas neurales asociadas a puntos retinianos de ambos ojos que tengan en común el mismo punto objeto. Esto es preferible que sea posible en el mayor campo visual móvil y estacionario común entre ambos ojos.

1.5 Conceptos básicos

Al exponer las condiciones de la visión binocular han aparecido algunos conceptos que cabe matizar para mejorar la comprensión del apartado anterior:

Campo visual monocular (CV): zona del espacio donde son visibles los objetos simultáneamente manteniendo la mirada en un punto. Se puede medir de tres formas:

a) Trans-esclerótica: se observa enucleando el ojo, por detrás de la esclera.

b) Óptica: se calcula por el límite de la pupila de entrada.

c) Retiniana: se mide clínicamente mediante oftalmoscopía.

Campo visual binocular (CVB): lugar del espacio donde se solapan los dos campos visuales monoculares, es decir, CVB = CVI ∩ CVD. Este campo se mide manteniendo la fijación estática en un punto, es decir, sin permitir movimientos oculares o de la cabeza. Tiene una disminución en su zona central debido a la presencia de la nariz.

Campo de fijación binocular (CFB): región del espacio que contiene todos los puntos que pueden ser fijados por los dos ojos en movimiento mientras la cabeza permanece en posición estacionaria. A la vista de la fig. 1.7, tenemos que CFB ⊂CVB, o sea, que el campo de fijación binocular está dentro del campo visual binocular. Por tanto, si comparásemos estos conceptos entre especies, si CVB es grande, CFB también lo puede ser, lo cual implica mejor visión binocular.


Fig. 1.7 Campo de fijación binocular (izquierda) y campo visual binocular (derecha).

1.6 Grados de visión binocular

Partiendo de una clasificación clásica, que posteriormente se matizará según las teorías modernas, tenemos tres grados de visión binocular:

GRADO I: no existe superposición (fusión neural) de las dos imágenes retinianas, lo cual provoca la visión doble o diplopía.

GRADO II: existe fusión neural pero con algún esfuerzo, como por ejemplo, cuando uno se emborracha y pierde parcialmente la visión binocular estable.

GRADO III: existe fusión neural sin esfuerzo, lo que se denota como visión estereoscópica o haplopía, la cual es la que se considera normal en la mayoría de nosotros.

Esto no significa que, por no ser capaces, de momento, de interpretar la imagen oculta tridimensional de un autoestereograma (fig. 1.8), no tengamos el grado III. En principio, si poseemos visión binocular aparentemente normal, somos del tipo III. Pero, ¿cómo entonces no percibimos la figura oculta del autoestereograma? Como veremos a lo largo de este libro, todos somos capaces de ver esta imagen tridimensional oculta, pero para ello solamente es necesario controlar la coordinación motora de ambos ojos, la coordinación sensorial, si es normal, se dará automáticamente.


Fig. 1.8 Ejemplo de autoestereograma de puntos aleatorios. ¿Qué figura matemática en tres dimensiones se oculta en la figura?

Fundamentos de visión binocular

Подняться наверх