Читать книгу Die Grundlagen der Arithmetik - Frege Gottlob - Страница 3
I. Meinungen einiger Schriftsteller über die Natur der arithmetischen Sätze
Sind die Gesetze der Arithmetik inductive Wahrheiten?
Оглавление§ 9. Die bisherigen Erwägungen machen es wahrscheinlich, dass die Zahlformeln allein aus den Definitionen der einzelnen Zahlen mittels einiger allgemeinen Gesetze ableitbar sind, dass diese Definitionen beobachtete Thatsachen weder behaupten noch zu ihrer Rechtmässigkeit voraussetzen. Es kommt also darauf an, die Natur jener Gesetze zu erkennen.
Mill 17 will zu seinem vorhin erwähnten Beweise der Formel 5 + 2 = 7 den Satz »was aus Theilen zusammengesetzt ist, ist aus Theilen von diesen Theilen zusammengesetzt« benutzen. Dies hält er für einen charakteristischern Ausdruck des sonst in der Form »die Summen von Gleichem sind gleich« bekannten Satzes. Er nennt ihn inductive Wahrheit und Naturgesetz von der höchsten Ordnung. Für die Ungenauigkeit seiner Darstellung ist es bezeichnend, dass er diesen Satz gar nicht an der Stelle des Beweises heranzieht, wo er nach seiner Meinung unentbehrlich ist; doch scheint es, dass seine inductive Wahrheit Leibnizens Axiom vertreten soll: »wenn man Gleiches an die Stelle setzt, bleibt die Gleichung bestehen.« Aber um arithmetische Wahrheiten Naturgesetze nennen zu können, legt Mill einen Sinn hinein, den sie nicht haben. Er meint z. B.18 die Gleichung 1 = 1 könne falsch sein, weil ein Pfundstück nicht immer genau das Gewicht eines andern habe. Aber das will der Satz 1 = 1 auch gar nicht behaupten.
Mill versteht das + Zeichen so, dass dadurch die Beziehung der Theile eines physikalischen Körpers oder eines Haufens zu dem Ganzen ausgedrückt werde; aber das ist nicht der Sinn dieses Zeichens. 5 + 2 = 7 bedeutet nicht, dass wenn man zu 5 Raumtheilen Flüssigkeit 2 Raumtheile Flüssigkeit giesst, man 7 Raumtheile Flüssigkeit erhalte, sondern dies ist eine Anwendung jenes Satzes, die nur statthaft ist, wenn nicht infolge etwa einer chemischen Einwirkung eine Volumänderung eintritt. Mill verwechselt immer Anwendungen, die man von einem arithmetischen Satze machen kann, welche oft physikalisch sind und beobachtete Thatsachen zur Voraussetzung haben, mit dem rein mathematischen Satze selber. Das Pluszeichen kann zwar in manchen Anwendungen einer Haufenbildung zu entsprechen scheinen; aber dies ist nicht seine Bedeutung; denn bei andern Anwendungen kann von Haufen, Aggregaten, dem Verhältnisse eines physikalischen Körpers zu seinen Theilen keine Rede sein, z. B. wenn man die Rechnung auf Ereignisse bezieht. Zwar kann man auch hier von Theilen sprechen; dann gebraucht man das Wort aber nicht im physikalischen oder geometrischen, sondern im logischen Sinne, wie wenn man die Ermordungen von Staatsoberhäuptern einen Theil der Morde überhaupt nennt. Hier hat man die logische Unterordnung. Und so entspricht auch die Addition im Allgemeinen nicht einem physikalischen Verhältnisse. Folglich können auch die allgemeinen Additionsgesetze nicht Naturgesetze sein.
§ 10. Aber sie könnten vielleicht dennoch inductive Wahrheiten sein. Wie wäre das zu denken? Von welchen Thatsachen soll man ausgehen, um sich zum Allgemeinen zu erheben? Dies können wohl nur die Zahlformeln sein. Damit verlören wir freilich den Vortheil wieder, den wir durch die Definitionen der einzelnen Zahlen gewonnen haben, und wir müssten uns nach einer andern Begründungsweise der Zahlformeln umsehen. Wenn wir uns nun auch über dies nicht ganz leichte Bedenken hinwegsetzen, so finden wir doch den Boden für die Induction ungünstig; denn hier fehlt jene Gleichförmigkeit, welche sonst diesem Verfahren eine grosse Zuverlässigkeit geben kann. Schon Leibniz19 lässt dem Philalèthe auf seine Behauptung:
»Die verschiedenen Modi der Zahl sind keiner andern Verschiedenheit fähig, als des mehr oder weniger; daher sind es einfache Modi wie die des Raumes«
antworten:
»Das kann man von der Zeit und der geraden Linie sagen, aber keinesfalls von den Figuren und noch weniger von den Zahlen, die nicht blos an Grösse verschieden, sondern auch unähnlich sind. Eine gerade Zahl kann in zwei gleiche Theile getheilt werden und nicht eine ungerade; 3 und 6 sind trianguläre Zahlen, 4 und 9 sind Quadrate, 8 ist ein Cubus u. s. f.; und dies findet bei den Zahlen noch mehr statt als bei den Figuren; denn zwei ungleiche Figuren können einander vollkommen ähnlich sein, aber niemals zwei Zahlen.«
Wir haben uns zwar daran gewöhnt, die Zahlen in vielen Beziehungen als gleichartig zu betrachten; das kommt aber nur daher, weil wir eine Menge allgemeiner Sätze kennen, die von allen Zahlen gelten. Hier müssen wir uns jedoch auf den Standpunkt stellen, wo noch keiner von diesen anerkannt ist. In der That möchte es schwer sein, ein Beispiel für einen Inductionsschluss zu finden, das unserem Falle entspräche. Sonst kommt uns oft der Satz zu statten, dass jeder Ort im Raume und jeder Zeitpunkt an und für sich so gut wie jeder andere ist. Ein Erfolg muss an einem andern Orte und zu einer andern Zeit ebensogut eintreten, wenn nur die Bedingungen dieselben sind. Das fällt hier hinweg, weil die Zahlen raum- und zeitlos sind. Die Stellen in der Zahlenreihe sind nicht gleichwerthig wie die Orte des Raumes.
Die Zahlen verhalten sich auch ganz anders als die Individuen etwa einer Thierart, da sie eine durch die Natur der Sache bestimmte Rangordnung haben, da jede auf eigne Weise gebildet ist und ihre Eigenart hat, die besonders bei der 0, der 1 und der 2 hervortritt. Wenn man sonst einen Satz in Bezug auf eine Gattung durch Induction begründet, hat man gewöhnlich schon eine ganze Reihe gemeinsamer Eigenschaften allein schon durch die Definition des Gattungsbegriffes. Hier hält es schwer, nur eine einzige zu finden, die nicht selbst erst nachzuweisen wäre.
Am leichtesten möchte sich unser Fall noch mit folgendem vergleichen lassen. Man habe in einem Bohrloche eine mit der Tiefe regelmässig zunehmende Temperatur bemerkt; man habe bisher sehr verschiedene Gesteinsschichten angetroffen. Es ist dann offenbar aus den Beobachtungen, die man an diesem Bohrloche gemacht hat, allein nichts über die Beschaffenheit der tiefern Schichten zu schliessen, und ob die Regelmässigkeit der Temperaturvertheilung sich weiter bewähren würde, muss dahingestellt bleiben. Unter den Begriff »was bei fortgesetztem Bohren angetroffen wird« fällt zwar das bisher Beobachtete wie das Tieferliegende; aber das kann hier wenig nützen. Ebenso wenig wird es uns bei den Zahlen nützen, dass sie sämmtlich unter den Begriff »was man durch fortgesetzte Vermehrung um eins erhält« fallen. Man kann eine Verschiedenheit der beiden Fälle darin finden, dass die Schichten nur angetroffen werden, die Zahlen aber durch die fortgesetzte Vermehrung um eins geradezu geschaffen und ihrem ganzen Wesen nach bestimmt werden. Dies kann nur heissen, dass man aus der Weise, wie eine Zahl, z. B. 8, durch Vermehrung um 1 entstanden ist, alle ihre Eigenschaften ableiten kann. Damit giebt man im Grunde zu, dass die Eigenschaften der Zahlen aus ihren Definitionen folgen, und es eröffnet sich die Möglichkeit, die allgemeinen Gesetze der Zahlen aus der allen gemeinsamen Entstehungsweise zu beweisen, während die besondern Eigenschaften der einzelnen aus der besondern Weise zu folgern wären, wie sie durch fortgesetzte Vermehrung um eins gebildet sind. So kann man auch, was bei den Erdschichten, schon durch die Tiefe allein bestimmt ist, in der sie getroffen werden, also ihre Lagenverhältnisse, eben daraus schliessen, ohne dass man die Induction nöthig hätte; was aber nicht dadurch bestimmt ist, kann auch die Induction nicht lehren.
Vermuthlich kann das Verfahren der Induction selbst nur mittels allgemeiner Sätze der Arithmetik gerechtfertigt werden, wenn man darunter nicht eine blosse Gewöhnung versteht. Diese hat nämlich durchaus keine wahrheitverbürgende Kraft. Während das wissenschaftliche Verfahren nach objectiven Maasstäben bald in einer einzigen Bestätigung eine hohe Wahrscheinlichkeit begründet findet, bald tausendfaches Eintreffen fast für werthlos erachtet, wird die Gewöhnung durch Zahl und Stärke der Eindrücke und subjective Verhältnisse bestimmt, die keinerlei Recht haben, auf das Urtheil Einfluss zu üben. Die Induction muss sich auf die Lehre von der Wahrscheinlichkeit stützen, weil sie einen Satz nie mehr als wahrscheinlich machen kann. Wie diese Lehre aber ohne Voraussetzung arithmetischer Gesetze entwickelt werden könne, ist nicht abzusehen.
§ 11. Leibniz20 meint dagegen, dass die nothwendigen Wahrheiten, wie man solche in der Arithmetik findet, Principien haben müssen, deren Beweis nicht von den Beispielen und also nicht von dem Zeugnisse der Sinne abhangt, wiewohl ohne die Sinne sich niemand hätte einfallen lassen, daran zu denken. »Die ganze Arithmetik ist uns eingeboren und in uns auf virtuelle Weise.« Wie er den Ausdruck »eingeboren« meint, verdeutlicht eine andere Stelle21: »Es ist nicht wahr, dass alles, was man lernt, nicht eingeboren sei; – die Wahrheiten der Zahlen sind in uns, und nichtsdestoweniger lernt man sie, sei es, indem man sie aus ihrer Quelle zieht, wenn man sie auf beweisende Art lernt (was eben zeigt, dass sie eingeboren sind), sei es …«.
17
A. a. O. III. Buch, XXIV. Cap., § 5.
18
A. a. O. II. Buch, VI. Cap., § 3.
19
Baumann, a. a. O. II., S. 39; Erdm. S. 243.
20
Baumann a. a. O. Bd. II., S. 13 u. 14; Erdm. S. 195, S. 208 u. 209.
21
Baumann a. a. O. Bd. II., S. 38; Erdm. S. 212.