Читать книгу Essays on the Microscope - George Comp Adams - Страница 9
TO MAKE SMALL GLASS MICROSCOPIC GLOBULES.
ОглавлениеTake two rods of glass, one in each hand, place their extremities close to each other, and in the purest part of the flame; when you perceive the ends to be fused, separate them from each other; the heated glass following each rod, will be finer, in proportion to the length it is drawn to, and the smallness of the rod; in this manner you may procure threads of glass of any degree of fineness. Direct the flame to the middle of the thread, and it will be instantly divided into two parts. When one of the threads is perfectly cool, place it at the extremity of the flame, by which it will be rendered round; and, if the thread of glass be very fine, an exceeding small globule will be formed. This thread may now be broke off from the rod, and a new one may be again drawn out as before, by the assistance of the other glass rod.
The small ball is now to be separated from the thread of glass; this is easily effected by the sharp edge of a piece of flint. The ball should be placed in a groove of paper, and another piece of paper be held over it, to prevent the ball from flying about and being lost. A quantity of globules ought to be prepared in this manner; they are then to be cleaned, and afterwards placed in the cavities of the tripoli, by means of a delicate pair of nippers. The globules are now to be melted a second time, in order to render them completely spherical; for this purpose, bring one of the cavities near the extremity of the flame, directing this towards the tripoli, which must be first heated; the cavity is then to be lowered, so that the flame may touch the glass, which, when it is red hot, will assume a perfect globular form; it must then be removed from the flame, and laid by; when cold, it should be cleaned, by rubbing between two pieces of white paper. Let it now be set in a brass cap, to try whether the figure be perfect. If the object be not well defined, the globule must be thrown away. Though, if it be large, it may be exposed two or three times to the flame. When a large globule is forming, it should be gently agitated by shaking the tripoli, which will prevent its becoming flat on one side. By attending to these directions, the greater part of the globules will be round and fit for use. In damp weather, notwithstanding every precaution, it will often happen, that out of forty globules, four or five only will be fit for use.
Mr. Stephen Gray, of the Charter-House, having observed some irregular particles within a glass globule, and finding that they appeared distinct and prodigiously magnified when held close to his eye, concluded, that if he placed a globule of water, in which there were any particles more opake than the water, near his eye, he should see those particles distinctly and highly magnified. This idea, when realized, far exceeded his expectation. His method was, to take on a pin a small portion of water which he knew had in it some minute animalculæ; this he laid on the end of a small piece of brass wire, till there was formed somewhat more than an hemisphere of water; on applying it then to the eye, he found the animalculæ most enormously magnified; for those which were scarce discernible with his glass globules, with this appeared as large as ordinary sized peas. They cannot be seen in day-time, except the room be darkened, but are seen to the greatest advantage by candle-light. Montucla observes, that when any objects are inclosed within this transparent globule, the hinder part of it acts like a concave mirror, provided they be situated between that surface and the focus; and that by these means they are magnified three times and an half more than they would be in the usual way. An extempore microscope may be formed, by taking up a small drop of water on the point of a pin, and placing it over a fine hole made in a piece of metal; but as the refractive power of water is less than that of glass, these globules do not magnify so much as those of the same size which are made of glass: this was also contrived by Mr. Gray. The same ingenious author invented another water microscope, consisting of two drops of water, separated in part by a thin brass plate, but touching near the center; which were thus rendered equivalent to a double convex lens of unequal convexities.
Dr. Hooke describes a method of using the single microscope, which seems to have a great analogy to the foregoing methods of Mr. Gray. “If you are desirous,” says he, “of obtaining a microscope with one single refraction, and consequently capable of procuring the greatest clearness and brightness any one kind of microscope is susceptible of; spread a little of the fluid you intend to examine, on a glass plate, bring this under one of your microscopic globules, then move it gently upwards, till the fluid touch the globule, to which it will soon adhere, and that so firmly, as to bear being moved a little backwards or forwards. By looking through the globule, you will then have a perfect view of the animalculæ in the drop.”[11]
[11] Hooke’s Lectures and Conjectures, p. 98.
Having laid before the reader the principal improvements that have been suggested, or made in the single microscope, it remains only to point out those instruments of this kind, which, from the mode in which they are fitted up, seem best adapted for general use; the peculiar advantages of which, as well as the manner of using them, will be described in the third chapter of this work.
Fig. 1. Plate VI. A botanical microscope, contrived by Dr. Withering.
Fig. 2. Plate VI. A botanical microscope, by Mr. B. Martin, being the most universal pocket microscope.
Fig. 3. Plate VI, represents that which was used by M. Lyonnet for dissecting the cossus.
Fig. 5. Plate VI. The tooth and pinion microscope, which is now generally substituted in the room of Wilson’s. Fig. 1. Plate II. B.
Fig. 1. Plate VII. B. The aquatic microscope used by Mr. Ellis for investigating the nature of coralline, and recommended to botanists by Mr. Curtis, in his valuable publication, the “Flora Londinensis.”
Fig. 7. Plate VIII. A botanical magnifier, or hand megalascope, which by the different combinations of its three lenses produces seven different magnifying powers; when the three are used together, they are turned in, and the object viewed through the apertures in the sides.
Fig. 8. Plate VIII. A botanical magnifier, having one large lens and two small ones, but not admitting of more than three powers.
A compound microscope, as it consists of two, three, or more glasses, is more easily varied, and is susceptible of greater changes in its construction, than the single microscope. The number of the lenses, of which it is formed, may be increased or diminished, their respective positions may be varied, and the form in which they are mounted be altered almost ad infinitum. But among these varieties, some will be found more deserving of attention than others; we shall here treat of these only.
The three first compound microscopes deserving of notice, are those of Dr. Hooke, Eustachio Divinis, and Philip Bonnani. Dr. Hooke gives an account of his in the preface to his Micrographia, which has been already cited; it was about three inches in diameter, seven long, and furnished with four draw-out tubes, by which it might be lengthened as occasion required: it had three glasses—a small object glass, a middle glass, and a deep eye glass. Dr. Hooke used all the glasses when he wanted to take in a considerable part of an object at once, as by the middle glass a number of radiating pencils were conveyed to the eye, which would otherwise have been lost: but when he wanted to examine with accuracy the small parts of any substance, he took out the middle glass, and only made use of the eye and object lenses; for the fewer the refractions are, the clearer and more bright the object appears.
An account of Eustachio Divinis’s microscope was read at the Royal Society, in 1668.[12] It consisted of an object lens, a middle glass, and two eye glasses, which were plano convex lenses, and were placed so that they touched each other in the center of their convex surfaces; by which means the glass takes in more of an object, the field is larger, the extremities of it less curved, and the magnifying power greater. The tube, in which the glasses were inclosed, was as large as a man’s leg, and the eye glasses as broad as the palm of the hand. It had four several lengths; when shut up, it was sixteen inches long, and magnified the diameter of an object forty-one times; at the second length, ninety times; at the third length, one hundred and eleven times; at the fourth length, one hundred and forty-three times. It does not appear that E. Divinis varied the object lenses.
[12] Philos. Trans. No. 42.
Philip Bonnani published an account of his two microscopes in 1698;[13] both were compound; the first was similar to that which Mr. Martin published as new, in his Micrographia Nova,[14] in 1742. His second was like the former, composed of three glasses, one for the eye, a middle glass, and an object lens; they were mounted in a cylindrical tube, which was placed in an horizontal position; behind the stage was a small tube, with a convex lens at each end; beyond this was a lamp; the whole capable of various adjustments, and regulated by a pinion and rack; the small tube was used to condense the light on the object, and spread it uniformly over it according to its nature, and the magnifying power that was used.
[13] Bonnani Observationes circa Viventia.
[14] Micrographia Nova, by B. Martin, 4to.
If the reader attentively consider the construction of the foregoing microscopes, and compare them with more modern ones, he will be led to think with me, that the compound microscope has received very little improvement since the time of Bonnani. Taken separately, the foregoing constructions are equal to some of the most famed modern microscopes. If their advantages be combined, they are far superior to that of M. Dellebarre, notwithstanding the pompous eulogium affixed thereto by Mess. De L’Academie Royale des Sciences.[15]
[15] Memoires sur les Differences de la Construction et des Effets du Microscope, de M. L. F. Dellebarre, 1777.
From this period, to the year 1736, the microscope appears not to have received any considerable alteration, but the science itself to have been at a stand. The improvements which were making in the reflecting telescope, naturally led those who had considered the subject, to expect a similar advantage would accrue to microscopes on the same principles: accordingly we find two plans of this kind; the first was that of Dr. Robert Barker. This instrument is entirely the same as the reflecting telescope, excepting the distance of the two speculums, which is lengthened, in order to adapt it to those pencils of rays which enter the telescope diverging; whereas, from very distant objects, they come in a direction nearly parallel. But this was soon laid aside, not only as it was more difficult to manage, but also because it was unfit for any but very small or transparent objects: for the object being between the speculum and the image, would, if it were large and opake, prevent a due reflection of light on the object.
The second was contrived by Dr. Smith.[16] In this there were two reflecting mirrors, one concave and the other convex; the image was viewed by a lens. This microscope, though far from being executed in the best manner, performed, says Dr. Smith, very well, so that he did not doubt but that it would have excelled others, if it had been properly finished.
[16] Dr. Smith’s Optics, Remarks, p. 94.
As some years are more favourable to the fruits of the earth, so also some periods are more favourable to particular sciences, being rich in discovery, and cultivated with ardor. Thus, in the year 1738, Dr. Lieberkühn’s invention of the solar microscope was communicated to the public: the vast magnifying power which was obtained by this instrument, the colossal grandeur with which it exhibited the minima of nature, the pleasure which arose from being able to display the same object to a number of observers at the same time, by affording a new source of rational amusement, increased the number of microscopic observers, who were further stimulated to the same pursuits by Mr. Trembley’s famous discovery of the polype: the wonderful properties of this little animal, together with the works of Mr. Trembley, Baker, and my father, revived the reputation of this instrument.[17]
[17] Trembley Memoires sur les Polypes. Baker’s Microscope made Easy; Attempt towards an History of the Polype; Employment for the Microscope. Adams’s Micrographia Illustrata. Joblot’s Observations d’Histoire Naturelle.
Every optician now exercised his talents in improving, as he called it, the microscope; in other words, in varying its construction, and rendering it different from that sold by his neighbour. Their principal object seemed to be, only to subdivide the instrument, and make it lie in as small a compass as possible; by which means, they not only rendered it complex and troublesome in use, but lost sight also of the extensive field, great light, and other excellent properties of the more ancient instruments; and, in some measure, shut themselves out from further improvements on the microscope. Every mechanical instrument is susceptible of almost infinite combinations and changes, which are attended with their relative advantages and disadvantages: thus, what is gained in power, is lost in time; “he that loves to be confined to a small house, must lose the benefit of air and exercise.”
The microscope, nearly at the same period, gave rise to M. Buffon’s famous system of organic molecules, and M. Needham’s incomprehensible ideas concerning a vegetable force and the vitality of matter. M. Buffon has dressed up his system with all the charms of eloquence, presenting it to the mind in the most agreeable and lively colours, exerting the depths of erudition in the most interesting and seducing manner to establish his hypothesis, making us almost ready to adopt it against the dictates of reason, and the evidence of facts. But whether this great man was misled by the warmth of his imagination, his attachment to a favourite system, or the use of imperfect instruments, it appears but too evident, that he was not acquainted with the objects whose nature he attempted to investigate; and it is probable, that he never saw[18] those which he supposed he was describing, continually confounding the animalculæ produced from the putrifying decomposition of animal substances, with the spermatic animalculæ, although they are two kinds of beings, differing in form and nature; so that the beautiful fabric attempted to be raised on his hypothesis, vanishes before the light of truth and well conducted experiments.
[18] Porro Buffonius, ut cum illustris viri venia dicam, omnino non videtur vermiculos seminales vidisse. Diuturnitas enim vitæ quam suis corpusculis tribuit, ostendit non esse nostra animalcula (id est, spermatica) quibus brevis et paucarum horarum vita est. Haller Physiol. tom. 7.
After this period, the mind, either satisfied with the discoveries already made, which will be particularly described hereafter, or tired by its own exertions, sought for repose in other pursuits; so that for several years this instrument was again, in some measure, laid aside. In 1770, Dr. Hill[19] published a treatise, in which he endeavoured to explain the construction of timber by the microscope, and shew the number, the nature, and office of its several parts, their various arrangements and proportions in the different kinds; and point out a way of judging, from the structure of trees, the uses they will best serve in the affairs of life. So important a subject soon revived the ardor for microscopic pursuits, which seems to have been increasing ever since. About the same time, my father contrived an instrument for cutting the transverse sections of wood, in order that the texture thereof might be rendered more visible in the microscope, and consequently be better understood; this instrument was afterwards improved by Mr. Cumming. Another instrument for the same purpose, more certain in its effects, and more easily managed, is represented in Fig. 1. Plate IX; and will be described in one of the following chapters. Dr. Hill and Mr. Custance now endeavoured to bring back the microscope nearer to the old standard, to increase the field by the multiplication of the eye glasses, and to augment the light on the object, by condensing lenses; and in this they happily succeeded: Mr. Custance was unrivalled in his dexterity in preparing, and accuracy in cutting thin transverse sections of wood.
[19] Dr. Hill on the Construction of Timber.
In 1771, my father published a fourth edition of his Micrographia, in which he described the principal inventions then in use; particularly a contrivance of his own, for applying the solar microscope to the camera obscura, and illuminating it at night by a lamp, by which means a picture of microscopic objects might be exhibited in winter evenings.
It appears[20] from the testimony of M. Æpinus, that Dr. Lieberkühn had considerably improved the solar microscope, by adapting it to view opake objects. This contrivance was by some means lost. The knowledge, however, that such an effect had been produced, led Æpinus to attend to the subject himself, in which he in some measure succeeded, and would, no doubt, have brought it to perfection, if he had increased the size of his illuminating mirror. Some further improvements were made on this instrument by M. Ziehr; but the most perfect instrument of the kind, is that of Mr. B. Martin, who published an account of it in the year 1774.[21] The common solar microscope does not shew the surface of any object, whereas the opake solar microscope not only magnifies the object, but exhibits on a screen an expanded picture of its surface, with all its colours, in a most beautiful manner.
[20] Priestley’s Hist. of Optics, p. 743.
[21] Martin’s Description and Use of an Opake Solar Microscope. The merits and ingenuity in constructing and improving microscopes by this learned optician, seem to be unnoticed by our late author. The following pamphlets by Mr. B. Martin are, among others of his valuable publications, instances of his indefatigable industry. Description and Use of a Pocket Reflecting Microscope, with a Micrometer; 1739. Micrographia Nova, or a New Treatise on the Microscope; 1742. Description of a New Universal Microscope; a Postscript to his New Elements of Optics; 1759. Description of several Sorts of Microscopes, and the Use of the Reflecting Telescope, as an universal Perspective for viewing every Sort of Objects. Optical Essays; 1770. A Description and Use of a Proportional Camera Obscura, with a Solar Microscope adapted thereto, annexed to his Description of the Opake Solar Microscope above-mentioned. Description of a New Universal Microscope; 1776. Description and Use of a Graphical Perspective and Microscope; 1771. Microscopium Polydynamicum, or a New Construction of a Microscope; 1771. An Essay on the genuine Construction of a standard Microscope and Telescope; 1776. Microscopium Pantometricum, or a new Construction of a Micrometer adapted to the Microscope. The most essential articles in the above works will be hereafter described. Edit.
About the year 1774, I invented the improved lucernal microscope; this instrument does not in the least fatigue the eye: it shews all opake objects in a most beautiful manner; and transparent objects may be examined by it in various ways, so that no part of an object is left unexplored; and the outlines of all may be taken with ease, even by those who are most unskilled in drawing.
M. L. F. Dellebarre published an account of his microscope in the year 1777. It does not appear from this, that it was superior in any respect to those that were made in England, but was inferior in others; for those published by my father in 1771 possessed all the advantages of Dellebarre’s in a higher degree, except that of changing the eye glasses.
In 1784, M. Æpinus published a description of what he termed new-invented microscopes, in a letter to the Academy of Sciences at Petersburgh;[22] they are nothing more than an application of the achromatic perspective to microscopic purposes. Now it has been long known to every one who is the least versed in optics, that any telescope is easily converted into a microscope, by removing the object glass to a greater distance from the eye glasses; and that the distance of the image varies with the distance of the object from the focus, and is magnified more as its distance from the object is greater: the same telescope may, therefore be successively turned into a microscope, with different magnifying powers. Mr. Martin had also shewn, in his description and use of a polydynamic microscope, how easily the small achromatic perspective may be applied to this purpose. Botanists might find some advantage in attending to this instrument; it would assist them in discovering small plants at a distance, and thus often save them from the thorns of the hedge, and the dirt of a ditch.