Читать книгу Die groot gedagte - Gideon Joubert - Страница 11

Оглавление

5

Soos gloeiende metaal in die groot, donker wolk

Daar het ’n storm uit die noorde gekom, ’n groot wolk. Vlamme het heen en weer geflits en daar was ’n helder skynsel om die wolk. Van binne uit, uit die vuur uit, het dit geblink soos ’n gloeiende wit metaal.

– Esegiël 1:4

Die hemelse baarmoeder

Hoe lyk die heelal se baarmoeder? Waar is die vrugbeginsels waaruit die biljoene sterre gebore word? Wat is die brandstof wat sterre miljoene jare so egalig laat skitter?

Iewers in die heelal, duisende ligjare ver, dryf ’n onsigbare, kolossale gaswolk. In die koue duisternis hang die slierte van die ontsaglike, yl wolk wat oor miljoene kilometers strek. Daar is baie sulke gaswolke in ons Melkweg en ook tussen die tallose galaksies in die oneindige ruimtes van die heelal.

Die gaswolk is onbeskryflik groot. Sy gesamentlike massa is genoeg om honderde sterre voort te bring. Nogtans is dit baie, baie yl – só yl dat net hier en daar ’n atoom rondswerf, waarskynlik nie meer as vyf of tien atome per kubieke sentimeter nie. Dít is uiters min; minder as in die beste lugleegte wat op aarde gemaak kan word.

Vergelyk dit met die getal atome in ons asem, wat sowat 30 000 000 000 000 000 000 per kubieke sentimeter bevat.

Die atome in die gaswolk is hoofsaaklik waterstof, verreweg die volopste gas in die heelal, en hier en daar ’n heliumatoom, ná waterstof die volopste. In die gaswolk is sowat sestien waterstofatome vir elke heliumatoom.

Die gaswolk is pikdonker, soos die vakuum wat dit omring. Dit is ook ondenkbaar koud: 100 Kelvin (-173 grade Celsius). In die hemelse baarmoeder is dit stil, donker, bitter koud, oneindig uitgestrek, leeg, onsigbaar en verlate.

Dit is al duisende miljoene jare so. Onveranderlik. Nog nooit het hier iets gebeur nie. Dit lyk ook nie of hier ooit iets kán gebeur nie, wat nog te sê gebore word. Gebore word? En dít vlammende, skitterende sterre?

Soos ’n baarmoeder bevrug moet word voordat dit geboorte kan gee, so moet die deurskynende newel ook eers “bevrug” word. Dít gebeur as ’n spiraalgalaksie met sy ontsaglike mallemeule-arms daar verbybeweeg.

Die spiraalsterrewiel van ons Melkweg het geweldige arms, miljoene kilometers lank, wat stadig soos die speke van ’n reuse-wiel saam met die galaksie in die rondte draai. Soos wat die arms deur die hemelruim swaai, veroorsaak dit skokgolwe wat die atome in ’n yl tussengalaktiese newel laat saambondel, byna soos room wat in ’n karring dik word voor dit botterklonte vorm.

Dit verdig die deursigtige gaswolk tot dit sigbaar word. Dit word ’n donker newel, ’n swart mantel wat voor die sterre getrek word en dit versluier. Geen ster skyn in die voue van sy slierte nie. Die sterre moet nog gebore word.

Soos aardse miswolke is ruimtenewels ook nie oral ewe dig nie. Hier en daar is meer atome as op ander plekke. Omdat alle materie swaartekrag het, is die aantrekkingskrag op die digter plekke sterker. Dit trek nóg meer atome saam.

Die newel word “krummelrig” en “klonterig”, hoewel dit steeds net yl gaswolke is. Die “klonte” is net digter as die omliggende gas. Dit lyk soos donker vlekke teen die agterdoek van die see van duisende sterre.

Elkeen van hierdie klonte kan duisende miljoene kilometers groot wees en die massa van duisende sonne hê. Die klonte is egter onstabiel. Soos wat die massa toeneem en die swaartekrag al sterker word, krimp elke klont en die atome word stywer saamgedruk.

Newelklonte wat saamgepers word, word warm soos ’n fietswiel wat opgepomp word. Die gas word warm en wil uitsit, maar die swaartekrag knel dit onverbiddelik vaster tot die gas in die hart van die klont van die hitte gloei.

Die hittegolwe worstel deur die digte, swaar sop van die warm newel buitentoe. Die newelwolk is nie meer donker nie, maar gloei met ’n rooi skynsel en gee ’n bloedige, vlammende skyn aan die omliggende wolk. ’n Lig is aangesteek. ’n Protoster word gebore. Ster is dit nog nie.

’n Splinternuwe sterretjie

Die protoster word geteister deur die kragtige en steeds toenemende knyptang van gravitasie. Die gasbol kan nie die geweldige massa teenhou wat hom van buite vasdruk nie. Daar is nie genoeg energie in sy hart om die geweldige druk van buite te trotseer nie. Die protoster word ineengepers. Dit krimp en word kleiner en kleiner en warmer en warmer. Steeds neem die druk van buite genadeloos toe.

Diep in die hart van die protoster bereik die hittegraad eindelik ’n ongelooflike 10 miljoen grade Celsius. ’n Siedende orkaan van hitte en druk ontstaan. Dit lyk of ’n onbeheerde, ontsaglike natuurramp die protoster getref het, of ’n hele brok van die heelal op homself instort.

’n Nuwe, gewelddadiger reaksie word ontketen: waterstof-“verbranding” word aangesteek. ’n Miljoen waterstofbomme ontplof in die hart van die protoster. Die donker wolk is in pynlike kraam. ’n Ster is besig om gebore te word. Soos Esegiël sy wolk in ’n ander verband beskryf: “van binne uit, uit die vuur uit, blink dit soos gloeiende wit metaal”.

’n Splinternuwe sterretjie blink dof in die wolk. In die proses word waterstof in helium omskep. Waterstofkerne wat deur fusie saamsmelt, vorm heliumkerne. Die heliumkern se massa is ’n titseltjie minder as die waterstofkerne waaruit dit gebore is.

Die orige massa of materie is omgesit in energie in die vorm van hitte en lig. Die energie beur uit die hart van die ster buitentoe, teen die geweldige swaartekrag wat binnetoe druk. Die pasgebore ster se gravitasiemassa van buite en sy uitdyende energie van binne kom in ewewig en hy krimp nie verder nie.

Die meeste van die sterre aan die hemel is sulke jong sterre wat waterstof “brand” en dit in helium verander. Die energie wat in ’n ster se kern ontketen word, het ’n miljoen jaar nodig om deur die ster se kokende buitenste lae te worstel voordat dit die oppervlak bereik. Dít is wat die ster laat skyn.

As ’n foton in ’n reguit lyn van die middel van die son na die oppervlak kon vlieg, sou dit net 2,5 sekondes duur. Maar in werklikheid duur dit gemiddeld tien miljoen jaar vir ’n foton om die son se oppervlak te bereik, al het dit die hele tyd teen ligsnelheid getrek. Die foton se slingerpad is dus tien miljoen ligjare lank. Volgens John Gribbin (1997. Companion to the Cosmos. Londen: Butler & Tanner, bl. 464) sou dit, as die pad reguit gemaak kon word, vyf keer verder gestrek het as die afstand tussen die aarde en die Andromeda-galaksie. “Anders gestel: As ons vandag kyk wat op die son se oppervlak gebeur, sien ons die gevolge van wat tien miljoen jaar gelede in die sonkern aangegaan het.

“Kyk ons na die son se oppervlak, kan ons nie seker wees nie dat die kern-interaksies reeds tien miljoen jaar gelede afgeskakel het (of stadiger verloop het) in die een of ander tyd in die afgelope miljoene jare.”

Eintlik is daar van “verbranding” geen sprake nie. Die proses is ’n termo-kernreaksie waarin ligte in swaarder elemente omskep word. Dít is alleen moontlik in die ondenkbare toestande van geweldige hitte en druk wat in die harte van sterre bestaan.

In die “vuur” van sterre is dit waterstof wat “brand”. Die “as” wat oorbly, is helium. Hierdie proses kan miljoene jare duur. Die ster is stabiel en straal energie egalig in die vorm van hitte en lig uit.

Ons eie ster, die son, is nou in hierdie fase van volwasse, bestendige, middeljarige uitstraling. Elke sekonde word 400 miljoen ton waterstof in helium omskep. Elke uur word die son dus 1 440 000 miljoen ton ligter! Dit is egter geen rede tot kommer nie. Die son is sowat 5 000 miljoen jaar oud en het nog 5 000 miljoen jaar om te lewe voordat sy waterstof sal begin opraak en hy sy einde sal nader.

Soos mense het sterre ook ’n lewensiklus van geboorte, jeugdige ontwikkeling, volwassenheid, veroudering en dood. Soos alles wat lewe is ook óns son tydelik, hoewel dit teen die tydskaal van die menslike bestaan na ’n ewigheid lyk.

Lord Kelvin, die Skotse fisikus en elektriese ingenieur wat ’n groot bydrae gelewer het tot die begrip van termodinamika en elektromagnetiese straling, het lank gelede bereken dat as die son se vuur met steenkool gebrand het sodat dit net so helder geskyn en net soveel hitte afgegee het, dit net ’n paar duisend jaar sou geleef het.

Dit is interessant om die tydskaal van ons son en die aarde met die tydskaal van die menslike geskiedenis te vergelyk. As die son se huidige ouderdom, rofweg bereken, aan agt dae gelykgestel sou word:

• Sou die aarde ’n week oud wees.

• Sou dinosourusse vyf of ses uur gelede gelewe het.

• Het ape drie uur gelede in die takke begin swaai.

• Het die Ystydperk ’n anderhalwe sekonde gelede opgehou.

• Het Jan van Riebeeck ’n twintigste van ’n sekonde gelede aan die Kaap geland.

Is daar plekke waar ek kan sien hoe sterre gebore word?

Daar is baie sulke “kosmiese baarmoeders”. Die Orion-newel is een van die skouspelagtigstes, en is ook maklik sigbaar. Foto’s is geneem van ’n stergeboorte wat hier plaasgevind het. Op onlangse foto’s van ’n deel van die Orion-newel, wat as ’n dowwe silwer vlekkie met die blote oog sigbaar is, is ’n sterretjie te sien wat nie op soortgelyke foto’s voorkom wat jare gelede geneem is nie.

Omdat ons in die Suidelike Halfrond is, staan Orion (die Jagter) vir ons op sy kop. Hierdie indrukwekkende sterrebeeld is van so te sê alle dele van die wêreld sigbaar en is een van die bekendste sterrebeelde. Dit is een van die weiniges wat naastenby lyk soos die figuur waarmee dit vereenselwig word.

Vier blink sterre wat ’n onreëlmatige vierkant vorm, is die skouers en bene van die reuse-krygsman. ’n Ry van drie sterre in die middel (die Drie Konings) stel die gordel voor. In Job 38:31 word hierdie drie “gordelsterre” die “band van Orion” genoem. Nog ’n ry van drie dowwe sterre wat “regop” staan, is die swaard wat vir ons onderstebo hang.

Een van die opvallendste kenmerke van die konstellasie is die groot newelvlek wat die middelste van die drie sterre van die swaard omswewe. Met ’n verkyker is dit duidelik sigbaar. Die newelvlek is meer as 1 300 ligjare ver en ons sien dit dus soos dit 1 300 jaar gelede was. Die newelvlek is 25 of 30 ligjare groot, dit wil sê lig het tussen 25 en 30 jaar nodig om van die een na die ander kant te trek.

Die sigbare silwer newelvlek is net ’n klein deeltjie van die wolk. Dit glim omdat die gas en stof bestraal word deur die ultravioletlig van die pasgebore warm, helder sterre.


Orion (die Jagter) met die sterre Rigel links bo en Betelgeuse regs onder. Die Groot Newel M42 omhul die middelste ster van die drie wat Orion se swaard vorm.

Die meeste sterre se geboorteplekke is nie so helder verlig nie. Dit lyk soos donker wolkklonte wat swart teen die blink agterdoek van verre sterre sigbaar is. ’n Voorbeeld hiervan is die bekende Perdekopnewel, ook in Orion. Dié pikswart “perdekop” is ’n donker silhoeët teen ’n blink newel ver agter.

Hoeveel sterre en planete gaan uit hierdie newels, die sterbaarmoeders kom? En hoeveel toekomstige digters, denkers, dromers, fisici en staatsmanne is in die vorm van yl gas daarin opgesluit?

Big whirls have little whirls,

That feed on their velocity,

And little whirls have lesser whirls,

And so on to viscosity

– L.F. Richardson,

aangehaal deur Joseph Silke: The Big Bang

Brullende sterre

Diep in elke ster woed ’n kookpot van kernreaksies wat geweldige stralings ontketen. Die straling in die hart van so ’n ster word deur gasdeeltjies verstrooi en geabsorbeer. Deur die ondeursigtige sop van gasse beur dit buitentoe.

As die sogenaamde sop baie donker is, word die straling opgedam en energie word deur konveksie (oordraging) verplaas, wat geweldige maalkolke veroorsaak, waarin die gas omgeroer en heen en weer gespoel word. Stygende en dalende gasstrome dra die hitte na die oppervlak.

Omdat sterre se buitenste lae dikwels baie dig en taai is, breek die strale moeilik deur. In die buitenste “dop” van ’n ster soos die son vind konveksie plaas. Sodoende word hitte na die oppervlak verplaas. Dit kan tot 10 miljoen jaar duur voordat die siedende straling van die son die oppervlak bereik.

In hul worstelings met hulleself brul en skreeu sterre met ’n intensiteit wat op die aarde ondenkbaar is. Ja, sterre gil en skreeu met ’n kakofonie van klanke, ontploffings, kreune en donderende klappe met so ’n intense akoestiese energie dat die oppervlak daardeur verhit word. Die son se skrikwekkende krete sou sekerlik op die aarde hoorbaar gewees het as daar nie ’n lugleë ruimte tussenin was nie.

Prof. Edward Harrison (1919-2007), in lewe professor in fisika en sterrekunde aan die Universiteit van Massachusetts, beskryf dit in sy boek Cosmology (1981. Cambridge University Press): “Die lied van ’n ster oortref die lied van ’n bultrugwalvis. ’n Ster se binnekant is ’n simfonie van klanke. “Dit weerklink van rammelende kreune, dit weergalm van die gedonder van tamboere en bewe van hoogklinkende, skreeuende gille . . .

“Klankgolwe trek binne ’n uur deur die ster. Deur voortdurende aanpassings, met elke deel wat seine na ander dele uitstuur, soek die ster elke oomblik om sy toestand van natuurlike ewewig te vind.

“Dit hyg en pas hom aan in verskeie stadige trillingstoonaarde. Op die ander uiterste, sestig oktawe hoër, is daar die gesis van hoëspoeddeeltjies wat mekaar rondstamp en golwe skep wat net oor kort afstande trek.

“Nie tevrede met hierdie orkestrasie van klank nie, is die ster ook ’n magtige luidspreker. Die digtheid verminder vinnig van die middel af tot by die oppervlak. Soos dit buitentoe spoel, neem die omvang van elke golf soos ’n sweepslag toe. ’n Versterkte stortvloed van klank bereik die oppervlak, dring deur, en word in die ster se buitenste atmosfeer verstrooi.

“By die son met sy luidrugtige konveksiedop word die stralekrans – die buitenste atmosfeer – deur hierdie voortdurende uitstorting van akoestiese energie teen ’n hittegraad van ’n miljoen grade in stand gehou. Weens sy baie lae digtheid kan die korona nie al die energie uitstraal wat dit ontvang nie. Dit volg die enigste moontlike uitweg: Dit sit uit en dra die energie weg.”

Die buitenste atmosfeer van die son is soos ’n reuse-straalenjin. Dit suig gas van die son se binneste af uit. Deur akoestiese energie verwarm, blaas die gas teen ’n hoë snelheid weg. Dít is die uitstromende sonwind wat elke sekonde 100 miljoen ton gas wegvoer.

“Ander sterre het ook sterwinde wat deur die innerlike akoestiese rumoer opgewek is. Hierdie winde is soms baie sterker as die sonwind. Dit kan so sterk wees dat sommige sterre letterlik verdwyn omdat hulle hulleself wegblaas teen ’n tydskaal wat net miljoene jare duur.”

Die ster kry ’n hartaanval

Vroeër of later haal die ouderdom elke helder, flonkerende ster in. Ná baie miljoene jare het hy al sy binneste waterstof opgebruik, en bly net helium in die kern oor.

Omdat daar nie meer druk van binne is om die geweldige swaartedruk van buite te weerstaan nie, kry die ster ’n soort hartaanval. Sy heliumryke kern begin onder die aanslag van oorweldigende swaartekrag swig. Soos die ster se “hart” krimp, styg die hittegraad tot nuwe, ongekende hoogtes.

Hoewel daar in die kern geen waterstof meer is om te brand nie, het daar tussen die kern en die oppervlak nog heelwat waterstof oorgebly. Die hittegraad van die kern neem so toe dat dit die omringende waterstof “aan die brand steek”. Die ster se buitenste dop swel.

Steeds neem die druk op die kern toe, tot dit ’n ongelooflike hittegraad van 100 miljoen grade Celsius bereik. Hitte dryf atome tot ’n hoër energievlak en laat hulle vinniger beweeg. Die heliumkerne beweeg só vinnig en bots só heftig teen mekaar dat fusie plaasvind.

“Heliumverbranding” word aangesteek. Die kerne smelt saam om koolstof en suurstof te vorm. Helium se “as” is dus koolstof en suurstof. In die ster is ongelooflike dinge aan die gebeur. Op twee verskillende plekke is twee verskillende reaksies aan die gang. Helium- én waterstofverbranding vind gelyktydig op verskillende vlakke plaas.

Met die ontketening van heliumverbranding in die kern bars ’n nuwe vrystelling van ontsettende energie los. Dit keer dat die kern verder deur die knyptang van gravitasie saamgepers word. Met die gelyktydige verbranding van waterstof en helium en die eensklapse losbarsting van oorweldigende energie swel die ster op. Dit lyk of die uitdrukkende krag gravitasie gaan oorwin. In plaas van inkrimping vind uitsetting plaas. Die buitenste lae van die ster word yler en swel duisendvoudig uit, sodat die ster groter en groter word.

Weens die uitsetting koel die buitenste lae vinnig af. Die ster het ’n koelerige reus geword. Aanvanklik is die temperatuur van die buitenste dop sowat 6 000 °C, dieselfde as die son s’n. Soos die ster groter en groter uitswel, daal die temperatuur van die dop tot ’n “koel” 3 000 °C. Die ster is nou nie meer witwarm nie, maar gloei rooi soos ’n kool vuur. So ’n ster word ’n rooireus genoem.

’n Katastrofiese toekoms wag op die son, die aarde en die ander planete. Wanneer die son oor 5 000 miljoen jaar begin uitsit in die proses om ’n rooireus te word, sal Merkurius verhit tot dit smelt en in gas verdamp. Venus se digte atmosfeer sal in die niet verdwyn en die planeet sal self ook smelt en verdamp.

’n Mens kan jou voorstel wat van die aarde sal word. Die temperatuur sal só toeneem dat alles wat lewe sal sterf. Die see sal kook en verdamp. Rotse en berge sal soos ys smelt. Mettertyd sal dit ook in gas verdamp, wat met die swellende rooi son sal saamsmelt. Alles waarvan ons gemaak is, wat oorspronklik sterstof was, sal aan die hemelruim teruggegee word waarvandaan dit oorspronklik gekom het.

Sterstof is jy, en tot sterstof sal jy terugkeer.

Die son sal in die proses waarskynlik ’n deursnee van meer as 500 miljoen kilometer bereik. Dit sal so groot wees dat dit Mars se oorspronklike baan om die son sal bedek en al die ander planete sal uitbrand.

In die hemel is baie sulke rooi sterre. In die naghemel kan ’n mens hulle maklik uitken weens hul rooierige skynsel. Al hierdie sterre is baie groot. Hulle het elk ’n warm, digte kern waar helium verbrand word, en dun, uitgeswelde atmosfere wat bloedrooi gloei.

Nóg ’n hartaanval

Só dan kom die einde van die aarde. Dit is egter nog nie die einde van die son nie. Weer nader die son, nou ’n rooireus, ’n krisis. Ná ’n verdere 1 000 miljoen jaar is al die helium in sy kern uitgebrand. Die ster kry sy tweede hartaanval.

Weer word die kern onstabiel. Weer krimp dit onder die aanslag van geweldige swaartekrag, en die temperatuur bereik nuwe hoogtes. Buite die warm kern is egter nog helium oor, en verder buitentoe is nog waterstof. Die hittige kern steek die helium aan sy buitekant aan die brand, en verder buitentoe brand die oorblywende waterstof in nog ’n kernreaksie.

Die ster het dus twee “brandende” doppe: ’n binneste, heliumbrandende skil en ’n buitenste, waterstofbrandende skil.

Die ster nader sy einde. Dit is sy laaste stuiptrekkings. Die ster begin pols. Hy swel en krimp, swel en krimp, soos ’n hygende sterwende wat ’n noodlottige hartaanval beleef.

Elke keer as dit swel, verkoel die kern en die kernreaksies neem af. Wanneer dit krimp, neem die hitte toe, en die kernverbranding word weer aangesteek. Tussen elke termiese polsing kan duisende jare verloop. Die tydskaal van die heelal is stadig maar seker.

Die ster se toestand versleg. Hy word al meer onstabiel. Sy polsings word heftiger. Die buitenste, koeler doppe verbrokkel en dryf in die ruimtes weg. Die warm kern word ontbloot. Dit is ’n helder ster wat sterk ultravioletlig uitstraal. Die hittegraad is sowat 100 000 °C. Dit laat die uitdrywende buitenste dop lyk soos ’n gloeiende krans wat om die ster kring.

So ’n silwer stralekrans word, verkeerdelik, ’n planetêre newel genoem – een van die mooiste verskynsels in die hemelruim. Kyk na die omslag van hierdie boek. Dit is ’n uitbeelding van ’n planetêre newel. Lees ook die byskrif vir die foto op die binneblad net na die titelblad.

Baie sulke sterre is in die hemel sigbaar. Die ringe kan nie met die blote oog gesien word nie, maar tydopnames lewer dramatiese foto’s van die wonderskone, gloeiende ringe om hierdie soort sterre.

Die sterwende ster kan tussen ’n kwart en die helfte van sy massa op hierdie manier aan die hemelruim afgee. Die ster het rus gevind. Anders as by die vorige prosesse van stervorming en -veroudering is hierdie ’n rustige gebeurtenis. Die ring dryf stadig en sonder geweld van sy liggaam weg, soos ’n siel wat die ewigheid invaar.

In hierdie toestand bestaan die ster net ’n rukkie, gemeet teen ’n skaal van hemelse tyd. Na sowat 50 000 jaar verdwyn sy planetêre newel in die niet. Die oorblywende dooie ster krimp soos dit uitbrand en afkoel. Dit krimp tot dit omtrent so klein soos die aarde is – dit het ’n witdwerg geword.

Dít sal ook die uiteinde van die son wees.

Witdwerge

Verreweg die meeste sterre is naastenby so groot soos die son. Om stermassas met mekaar te kan vergelyk sonder om in getalle van biljoene en biljoene tonne te verval, word sterre se massa met die son s’n vergelyk. Die son se massa is die hemelse maat waarvolgens sterre geweeg word.

Sterrekundiges sê dat die son een sonmassa het. ’n Ster wat twee keer so massief soos die son is, het twee sonmassas. Die meeste sterre is een sonmassa. Hier en daar is egter ’n piepklein sterretjie wat net ’n tiende sonmassa is. Daar is ook uitsonderlike reuse wat tot vyftig sonmassas is.

Die massa van ’n ster bepaal hoe vinnig gravitasie-inkrimping sal plaasvind, en gevolglik ook hoe vinnig die hittegraad in sy kern toeneem. ’n Ster se massa bepaal dus ook hoe vinnig hy deur sy lewensiklus gaan. Sterre met ’n geringe massa ontwikkel rustig en stadig, en dié met ’n groot massa ontwikkel vinnig en dramaties.

Swaartekrag het nie ’n groot invloed op sterre met ’n geringe massa nie. Dit duur lank voordat genoeg druk en hitte opgebou word om waterstofverbranding aan te steek. En as die sterretjie eindelik begin brand, word die waterstof stadig verbruik.

Sterre met ’n groot massa ontwikkel vinnig. Die druk en hitte bou vinnig op, die kernreaksies begin gou en die verbranding is oorweldigend. ’n Ster van vyftig sonmassas kan kant en klaar uitgebrand wees teen die tyd dat ’n klein sterretjie begin flonker.

Dit is verstaanbaar dat die Melkweg se klein sterretjies sedert geboorte min verander het, want hulle is nog bloedjonk volgens die interne ontwikkeling van sterre. In werklikheid is hierdie klein, “onderontwikkelde” sterretjies dikwels baie ouer as die tipiese grootmassa-sterre. Hulle is dus bloedjonk in ontwikkeling en stokoud in tyd.

Die pragtige blouwit Rigel, in die konstellasie Orion, is een van ons hemel se energiekste sterre. Hy is ’n baie helder ster wat sy kernbrandstof op massiewe skaal verbrand – teen sowat 80 000 miljoen ton per sekonde.

Selfs ’n enorme ster soos Rigel kan nie lank aanhou om so kwistig met sy energie te mors nie. Hy kan onmoontlik nie met sy teenswoordige helderheid en grootskaalse verbranding so lank aan die gang bly soos die son met sy baie suiniger brandstofverbruik nie. Rigel gaan homself gou uitbrand.

Hoewel Rigel op ses na die helderste ster in die hemel is, en 500 000 keer meer lig as die son uitstraal, is hy hoegenaamd nie die kragtigste lig in die Melkweg nie.

In die Groot Magellaanse Wolk is die ster S Doradus, wat ’n miljoen keer soveel lig soos die son uitstraal. S Doradus is egter so ver dat dit nie met die blote oog sigbaar is nie. Hierdie ster mors werklik met sy brandstof. Hy kan dit nie langer as ’n kwartmiljoen jaar so volhou nie.

Maar wat gebeur met ’n ster waarvan die massa net ’n tiende of minder as die son s’n is? Byna niks nie. Dit word nooit warm genoeg om die kern aan die brand te steek nie. Dit gloei net omdat dit krimp en redelik warm bly. As ster is dit ’n mislukking.

Nadat dit ’n tyd lank as ’n flou, dowwe sterretjie bestaan het, eindig die abortiewe sterretjie in ’n dooie liggaam. Dit word ’n swartdwerg genoem.

Die uiteinde van ’n ster van een sonmassa is ’n witdwerg. Soos vroeër gesê, is ’n atoom saamgestel uit ’n kern wat omring is met elektrone wat soos ’n wolkie daarom wentel.

Die kern bevat amper ál die massa van die atoom. Dit bestaan uit deeltjies wat protone en neutrone genoem word. Die protone het ’n positiewe lading en die neutrone is neutraal. Die elektrone wat om die kern wentel, is negatief gelaai. Normaalweg is daar net soveel positief-gelaaide protone as negatief-gelaaide elektrone, sodat die ladings mekaar neutraliseer.

Diep in die hart van ’n sterwende ster van een sonmassa word die atome egter so styf teen mekaar gedruk dat die elektrone van die kerne losgeskeur word. Die kerne dryf dan in ’n poel elektrone. Swaartekrag, wat triljoene tonne druk op die sterkern uitoefen, pers die ster saam tot dit naastenby so klein soos die aarde is. Die saamgeperste elektrone oefen genoeg weerstand na buite uit om verdere samepersing te weerstaan.

Die Switserse fisikus Wolfgang Pauli (1900-1958) het in 1945 die Nobelprys verwerf vir sy uitsluitingsbeginsel (die sogenaamde Pauli-verbod-beginsel wat reeds in die dertigerjare bekend was). Hiervolgens kan die druk van die elektrone wat van die kern losgeskeur is, die swaartedruk van ’n sterliggaam van tot 1,4 sonmassas steun.

Die digtheid van een van hierdie dooie sterre met ’n deursnee van 10 000 km is geweldig. ’n Vingerhoed hiervan weeg op die aarde ’n duisend ton! Wanneer die buitenste laag van so ’n ster in ’n pragtige ringnewel van hom wegdryf, is die buitekant van die ster nog baie warm – meer as 10 000 °C. Die ster krimp steeds en teen die tyd dat dit die grootte van die aarde bereik het, het die hittegraad tot 40 000 °C gestyg.

Die sterretjie, ’n witdwerg, skyn met ’n verblindende blouwit lig. Maar hy het gesterf. Hy sal aanhou afkoel, ’n proses wat feitlik vir ewig kan aanhou. Geleidelik straal witdwerge hul hitte in die koue, swart ruimte uit. Witdwerge is die algemeenste vorm van dooie sterre in die hemel.

Kyk ’n mens op in die naghemel, sien jy Sirius naby die konstellasie Orion. Dit is ’n opvallende, groot wit ster – die helderste in die hemel naas die son. Sirius word soms die Hondster genoem omdat dit die helderste ster in die konstellasie Canis Majoris (die Groot Hond) is.

Sirius het ’n dowwe maat wat net met ’n sterk teleskoop sigbaar is as ’n mens weet waar om te soek. Die donker maat (Sirius B) is ’n witdwerg. Sirius is dus eintlik ’n dubbelster met ’n gestorwe witdwerg.

Die meeste van die sterre aan die hemeltrans is dubbelsterre of veelvoudige sterre. Soms wentel hulle op ’n veilige afstand van mekaar en beïnvloed mekaar nie danig nie. As hulle egter naby mekaar wentel, het hulle ’n sterk gravitasie-invloed op mekaar.

Dít kan tot die heelal se skouspelagtigste dramas lei. Dit is egter ’n ander storie, wat in hoofstuk 6 vertel word.

Vroedvrou én lykbesorger

Gravitasie-ineenstorting word dikwels die vroedvrou én lykbesorger van die heelal genoem. Swaartekrag speel ’n dinamiese, oorheersende rol in die heelal. Dit is in swaartestortings dat sterre, sterretrosse en selfs galaksies gebore word. Dit is ook in swaartestortings waar sterre en hele sterretrosse sterf.

Die oorheersing van swaartekrag in die heelal lyk na ’n teenstrydigheid. Op die vlak van die atoom is dit baie flouer as die magtige wisselwerkende kragte binne die atoom, sowel as sy elektromagnetiese krag. Op die ontsaglike skaal van die heelal, waar die gravitasie-aantrekkingskrag van ontelbare atome saamspan, word dit egter ’n oorweldigende krag.

Die gesamentlike gravitasie van die triljoene en triljoene atome is sterk genoeg om te verwoes, en om nuwe sterre te baar: lykbesorger én vroedvrou.

Die groot gedagte

Подняться наверх