Читать книгу 2D Monoelements - Группа авторов - Страница 57
References
Оглавление1. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A., Electric field effect in atomically thin carbon films. Science, 306, 666, 2004.
2. Son, Y.W., Cohen, M.L., Louie, S.G., Half-metallic graphene nanoribbons. Nature, 444, 347, 2006.
3. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A., Singlelayer MoS2 transistors. Nat. Nanotechnol., 6, 147, 2011.
4. Li, L., Yu, Y., Ye, G.J., Ge, Q., Ou, X., Wu, H., Feng, D., Chen, X., Zhang, Y., Black phosphorus field-effect transistors. Nat. Nanotechnol., 9, 372, 2014.
5. Tran, V., Soklaski, R., Liang, Y., Yang, L., Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B, 89, 235319, 2014.
6. Wang, X., Jones, A.M., Seyler, K.L., Tran, V., Jia, Y., Zhao, H., Wang, H., Yang, L., Xu, X., Xia, F., Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol., 10, 517, 2015.
7. Favron, A., Gaufres, E., Fossard, F., Phaneuf-L’Heureux, A.L., Tang, N.Y., Levesque, P.L., Loiseau, A., Leonelli, R., Francoeur, S., Martel, R., Photo-oxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater., 14, 826, 2015.
8. Zhang, S., Yan, Z., Li, Y., Chen, Z., Zeng, H., Atomically thin arsenene and antimonene: Semimetal-semiconductor and indirect-direct band-gap transitions. Angew. Chem. Int. Ed., 54, 3112, 2015.
9. Pizzi, G., Gibertini, M., Dib, E., Marzari, N., Iannaccone, G., Fiori, G., Performance of arsenene and antimonene double-gate MOSFETs from first principles. Nat. Commun., 7, 12585, 2016.
10. Chen, X., Yang, Q., Meng, R., Jiang, J., Liang, Q., Tan, C., Sun, X., The electronic and optical properties of novel germanene and antimonene heterostructures. J. Mater. Chem. C, 4, 5434, 2016.
11. Zhang, S., Xie, M., Li, F., Yan, Z., Li, Y., Kan, E., Liu, W., Chen, Z., Zeng, H., Semiconducting group 15 monolayers: A broad range of band gaps and high carrier mobilities. Angew. Chem. Int. Ed., 55, 1666, 2016.
12. Wang, X., Song, J., Qu, J., Antimonene: From experimental preparation to practical application. Angew. Chem. Int. Ed., 58, 1574, 2019.
13. Butler, S.Z., Hollen, S.M., Cao, L., Cui, Y., Gupta, J.A., Gutiérrez, H.R., Heinz, T.F., Hong, S.S., Huang, J., Ismach, A.F., Johnston-Halperin, E., Kuno, M., Plashnitsa, V.V., Robinson, R.D., Ruoff, R.S., Salahuddin, S., Shan, J., Shi, L., Spencer, M.G., Terrones, M., Windl, W., Goldberger, J.E., Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano, 7, 2898, 2013.
14. Ares, P., Aguilar-Galindo, F., Rodriguez-San-Miguel, D., Aldave, D.A., Diaz-Tendero, S., Alcami, M., Martin, F., Gomez-Herrero, J., Zamora, F., Mechanical isolation of highly stable antimonene under ambient conditions. Adv. Mater., 28, 6332, 2016.
15. Castellanos-Gomez, A., Buscema, M., Molenaar, R., Singh, V., Janssen, L., van der Zant, H.S.J., Steele, G.A., Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater., 1, 011002, 2014.
16. Ares, P., Zamora, F., Gomez-Herrero, J., Optical identification of few-layer antimonene crystals. ACS Photonics, 4, 600, 2017.
17. Abellan, G., Ares, P., Wild, S., Nuin, E., Neiss, C., Miguel, D.R., Segovia, P., Gibaja, C., Michel, E.G., Gorling, A., Hauke, F., Gomez-Herrero, J., Hirsch, A., Zamora, F., Noncovalent functionalization and charge transfer in antimonene. Angew. Chem. Int. Ed., 56, 14389, 2017.
18. Ciesielski, A. and Samori, P., Graphene via sonication assisted liquid-phase exfoliation. Chem. Soc. Rev., 43, 381, 2014.
19. Gibaja, C., Rodriguez-San-Miguel, D., Ares, P., Gomez-Herrero, J., Varela, M., Gillen, R., Maultzsch, J., Hauke, F., Hirsch, A., Abellan, G., Zamora, F., Few-layer antimonene by liquid-phase exfoliation. Angew. Chem. Int. Ed., 55, 14345, 2016.
20. Lin, W., Lian, Y., Zeng, G., Chen, Y., Wen, Z., Yang, H., A fast synthetic strategy for high-quality atomically thin antimonene with ultrahigh sonication power. Nano Res., 11, 5968, 2018.
21. Wang, X., He, J., Zhou, B., Zhang, Y., Wu, J., Hu, R., Liu, L., Song, J., Qu, J., Bandgap-tunable preparation of smooth and large two-dimensional antimonene. Angew. Chem. Int. Ed., 57, 8668, 2018.
22. Gusmao, R., Sofer, Z., Bousa, D., Pumera, M., Pnictogen (As, Sb, Bi) nanosheets for electrochemical applications are produced by shear exfoliation using kitchen blenders. Angew. Chem. Int. Ed., 56, 14417, 2017.
23. Ares, P., Palacios, J.J., Abellán, G., Gómez-errero, J., Zamora, F., Recent progress on antimonene: A new bidimensional material. Adv. Mater., 30, 1703771, 2018.
24. Koma, A., van der Waals epitaxy—A new epitaxial growth method for a highly lattice-mismatched system. Thin Solid Films, 216, 72, 1992.
25. Ji, J., Song, X., Liu, J., Yan, Z., Huo, C., Zhang, S., Su, M., Liao, L., Wang, W., Ni, Z., Hao, Y., Zeng, H., Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat. Commun., 7, 13352, 2016.
26. Sun, X., Lu, Z., Xiang, Y., Wang, Y., Shi, J., Wang, G.C., Washington, M.A., Lu, T.M., van der Waals epitaxy of antimony islands, sheets, and thin films on single-crystalline graphene. ACS Nano, 12, 6100, 2018.
27. Liu, X., Sun, G., Chen, P., Liu, J., Zhang, Z., Li, J., Ma, H., Zhao, B., Wu, R., Dang, W., Yang, X., Dai, C., Tang, X., Chen, Z., Miao, L., Liu, X., Li, B., Liu, Y., Duan, X., High-performance asymmetric electrodes photodiode based on Sb/WSe2 heterostructure. Nano Res., 12, 339, 2018.
28. Lei, T., Liu, C., Zhao, J., Li, J., Li, Y., Wang, J., Wu, R., Qian, H., Wang, H., Ibrahim, K., Electronic structure of antimonene grown on Sb2Te3 (111) and Bi2Te3 substrates. J. Appl. Phys., 119, 015302, 2016.
29. Wu, X., Shao, Y., Liu, H., Feng, Z., Wang, Y., Sun, J., Liu, C., Wang, J., Liu, Z., Zhu, S., Wang, Y., Du, S., Shi, Y., Ibrahim, K., Gao, H., Epitaxial growth and air-stability of monolayer antimonene on PdTe2. Adv. Mater., 29, 1605407, 2017.
30. Shi, Z., Li, H., Yuan, Q., Song, Y., Lv, Y., Shi, W., Jia, Z., Gao, L., Chen, Y., Zhu, W., Li, S., Van der Waals heteroepitaxial growth of monolayer Sb in a puckered honeycomb structure. Adv. Mater., 31, 1806130, 2019.
31. Chen, K., Lee, L.M., Chen, H.A., Sun, H., Wu, C., Chen, H., Lin, K., Tseng, Y.C., Kaun, C.C., Pao, C.W., Lin, S.Y., Multi-layer elemental 2D materials antimonene, germanene and stanene grown directly on molybdenum disulfides. Semicond. Sci. Technol., 34, 105020, 2019.
32. Fortin-Deschenes, M., Jacobberger, R.M., Deslauriers, C.A., Waller, O., Bouthillier, E., Arnold, M.S., Moutanabbir, O., Dynamics of antimonenegraphene van der Waals growth. Adv. Mater., 31, 1900569, 2019.
33. Fortin-Deschenes, M., Waller, O., Mentes, T.O., Locatelli, A., Mukherjee, S., Genuzio, F., Levesque, P.L., Hebert, A., Martel, R., Moutanabbir, O., Synthesis of antimonene on germanium. Nano Lett., 17, 4970, 2017.
34. Shao, Y., Liu, Z.L., Cheng, C., Wu, X., Liu, H., Liu, C., Wang, J.O., Zhu, S.Y., Wang, Y.Q., Shi, D.X., Ibrahim, K., Sun, J.T., Wang, Y.L., Gao, H.J., Epitaxial growth of flat antimonene monolayer: A new honeycomb analogue of graphene. Nano Lett., 18, 2133, 2018.
35. Jałochowski, M. and Krawiec, M., Antimonene on Pb quantum wells. 2D Mater., 6, 045028, 2019.
36. Niu, T., Zhou, W., Zhou, D., Hu, X., Zhang, S., Zhang, K., Zhou, M., Fuchs, H., Zeng, H., Modulating epitaxial atomic structure of antimonene through interface design. Adv. Mater., 31, 1902606, 2019.
37. Peng, L., Ye, S., Song, J., Qu, J., Solution-phase synthesis of few-layer hexagonal antimonene nanosheets via anisotropic growth. Angew. Chem. Int. Ed., 58, 9891, 2019.
38. Tsai, H.S., Chen, C.W., Hsiao, C.H., Ouyang, H., Liang, J.H., The advent of multilayer antimonene nanoribbons with room temperature orange light emission. Chem. Commun., 52, 8409, 2016.
39. Wu, Q. and Song, Y.J., The environmental stability of large-size and single-crystalline antimony flakes grown by chemical vapor deposition on SiO2 substrates. Chem. Commun., 54, 9671, 2018.
40. Kim, S.H., Jin, K.H., Kho, B.W., Park, B.G., Liu, F., Kim, J.S., Yeom, H.W., Atomically abrupt topological p-n junction. ACS Nano, 11, 9671, 2017.
41. Kim, S.H., Jin, K.H., Park, J., Kim, J.S., Jhi, S.H., Yeom, H.W., Topological phase transition and quantum spin hall edge states of antimony few layers. Sci. Rep., 6, 33193, 2016.
42. Wang, M., Zhang, F., Wang, Z., Wu, Z., Xu, X., Passively Q-switched Nd3+ solid-state lasers with antimonene as saturable absorber. Opt. Express, 26, 4085, 2018.
43. Wang, Y., Huang, W., Wang, C., Guo, J., Zhang, F., Song, Y., Ge, Y., Wu, L., Liu, J., Li, J., Zhang, H., An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator. Laser Photonics Rev., 13, 1800313, 2019.
44. Zhang, F., Wang, M., Wang, Z., Han, K., Liu, X., Xu, X., Excellent nonlinear absorption properties of β-antimonene nanosheets. J. Mater. Chem. C, 6, 2848, 2018.
45. Liu, G., Zhang, F., Wu, T., Li, Z., Zhang, W., Han, K., Xing, F., Man, Z., Ge, X., Fu, S., Single-and dual-wavelength passively mode-locked erbium-doped fiber laser based on antimonene saturable absorber. IEEE Photonics J., 11, 1503011, 2019.
46. Song, Y., Chen, Y., Jiang, X., Liang, W., Wang, K., Liang, Z., Ge, Y., Zhang, F., Wu, L., Zheng, J., Ji, J., Zhang, H., Nonlinear few-layer antimonene-based all-optical signal processing: Ultrafast optical switching and high-speed wavelength conversion. Adv. Opt. Mater., 6, 1701287, 2018.
47. Song, Y., Liang, Z., Jiang, X., Chen, Y., Li, Z., Lu, L., Ge, Y., Wang, K., Zheng, J., Lu, S., Ji, J., Zhang, H., Few-layer antimonene decorated microfiber: Ultrashort pulse generation and all-optical thresholding with enhanced long term stability. 2D Mater., 4, 045010, 2017.
48. Zhang, F., He, J., Xiang, Y., Zheng, K., Xue, B., Ye, S., Peng, X., Hao, Y., Lian, J., Zeng, P., Qu, J., Song, J., Semimetal-semiconductor transitions for monolayer antimonene nanosheets and their application in perovskite solar cells. Adv. Mater., 30, 1803244, 2018.
49. Zhang, C., Li, Y., Zhang, P., Qiu, M., Jiang, X., Zhang, H., Antimonene quantum dot-based solid-state solar cells with enhanced performance and high stability. Sol. Energy Mater. Sol. Cells, 189, 11, 2019.
50. Wang, Z., Zhang, R., Zhao, M., Wang, Z., Wei, B., Zhang, X., Feng, S., Cao, H., Liu, P., Hao, Y., Wang, H., Xu, B., Pennycook, S.J., Guo, J., High-yield production of stable antimonene quantum sheets for highly efficient organic photovoltaics. J. Mater. Chem. A, 6, 23773, 2018.
51. Voiry, D., Salehi, M., Silva, R., Fujita, T., Chen, M., Asefa, T., Shenoy, V.B., Eda, G., Chhowalla, M., Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett., 13, 6222, 2013.
52. Yu, X., Prevot, M.S., Guijarro, N., Sivula, K., Self-assembled 2D WSe2 thin films for photoelectrochemical hydrogen production. Nat. Commun., 6, 7596, 2015.
53. Zhang, K., Jin, B., Park, C., Cho, Y., Song, X., Shi, X., Zhang, S., Kim, W., Zeng, H., Park, J.H., Black phosphorene as a hole extraction layer boosting solar water splitting of oxygen evolution catalysts. Nat. Commun., 10, 2001, 2019.
54. Ren, X., Li, Z., Qiao, H., Liang, W., Liu, H., Zhang, F., Qi, X., Liu, Y., Huang, Z., Zhang, D., Li, J., Zhong, J., Zhang, H., Few-layer antimonene nanosheet: A metal-free bifunctional electrocatalyst for effective water splitting. ACS Appl. Energy Mater., 2, 4774, 2019.
55. Li, F., Xue, M., Li, J., Ma, X., Chen, L., Zhang, X., MacFarlane, D.R., Zhang, J., Unlocking the electrocatalytic activity of antimony for CO2 reduction by two-dimensional engineering of the bulk material. Angew. Chem. Int. Ed., 56, 14718, 2017.
56. Gu, J., Du, Z., Zhang, C., Ma, J., Li, B., Yang, S., Liquid-phase exfoliated metallic antimony nanosheets toward high volumetric sodium storage. Adv. Energy Mater., 7, 1700447, 2017.
57. Tian, W., Zhang, S., Huo, C., Zhu, D., Li, Q., Wang, L., Ren, X., Xie, L., Guo, S., Chu, P.K., Zeng, H., Huo, K., Few-layer antimonene: Anisotropic expansion and reversible crystalline-phase evolution enable large-capacity and long-life Na-ion batteries. ACS Nano, 12, 1887, 2018.
58. Gao, Y., Tian, W., Huo, C., Zhang, K., Guo, S., Zhang, S., Song, X., Jiang, L., Huo, K., Zeng, H., Tailoring natural layered β-phase antimony into few layer antimonene for Li storage with high rate capabilities. J. Mater. Chem. A, 7, 3238, 2019.
59. Martínez-Periñán, E., Down, M.P., Gibaja, C., Lorenzo, E., Zamora, F., Banks, C.E., Antimonene: A novel 2D nanomaterial for supercapacitor applications. Adv. Energy Mater., 8, 1702606, 2018.
60. Tao, W., Kong, N., Ji, X., Zhang, Y., Sharma, A., Ouyang, J., Qi, B., Wang, J., Xie, N., Kang, C., Zhang, H., Farokhzad, O.C., Kim, J.S., Emerging twodimensional monoelemental materials (Xenes) for biomedical applications. Chem. Soc. Rev., 48, 2891, 2019.
61. Tao, W., Ji, X., Xu, X., Islam, M.A., Li, Z., Chen, S., Saw, P.E., Zhang, H., Bharwani, Z., Guo, Z., Shi, J., Farokhzad, O.C., Antimonene quantum dots: Synthesis and application as near-infrared photothermal aagents for effective cancer therapy. Angew. Chem. Int. Ed., 56, 11896, 2017.
62. Lu, G., Lv, C., Bao, W., Li, F., Zhang, F., Zhang, L., Wang, S., Gao, X., Zhao, D., Wei, W., Xie, H.Y., Antimonene with two-orders-of-magnitude improved stability for high-performance cancer theranostics. Chem. Sci., 10, 4847, 2019.
63. Yu, J., Wang, X.H., Feng, J., Meng, X., Bu, X., Li, Y., Zhang, N., Wang, P., Antimonene nanoflakes: Extraordinary photoacoustic performance for high-contrast imaging of small volume tumors. Adv. Healthcare Mater., 8, 1900378, 2019.
64. Tao, W., Ji, X., Zhu, X., Li, L., Wang, J., Zhang, Y., Saw, P.E., Li, W., Kong, N., Islam, M.A., Gan, T., Zeng, X., Zhang, H., Mahmoudi, M., Tearney, G.J., Farokhzad, O.C., Two-dimensional antimonene-based photonic nanomedicine for cancer theranostics. Adv. Mater., 30, 1802061, 2018.
65. Xue, T., Liang, W., Li, Y., Sun, Y., Xiang, Y., Zhang, Y., Dai, Z., Duo, Y., Wu, L., Qi, K., Shivananju, B.N., Zhang, L., Cui, X., Zhang, H., Bao, Q., Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor. Nat. Commun., 10, 28, 2019.
66. Tang, X., Hu, L., Fan, T., Zhang, L., Zhu, L., Li, H., Liu, H., Liang, J., Wang, K., Li, Z., Ruan, S., Zhang, Y., Fan, D., Chen, W., Zeng, Y., Zhang, H., Robust above-room-temperature ferromagnetism in few-layer antimonene triggered by nonmagnetic adatoms. Adv. Funct. Mater., 29, 1808746, 2019.
1 *Corresponding author: sxyang@buaa.edu.cn