Читать книгу Process Intensification and Integration for Sustainable Design - Группа авторов - Страница 25
References
Оглавление1 1 Wang, Q., Chen, X., Jha, A.N., and Rogers, H. (2014). Natural gas from shale formation – the evolution, evidences and challenges of shale gas revolution in United States. Renewable and Sustainable Energy Reviews 30: 1–28. https://doi.org/10.1016/j.rser.2013.08.065.
2 2 EPA (2018). The Process of Unconventional Natural Gas Production. U.S. Environmental Protection Agency. https://www.epa.gov/uog/process-unconventional-natural-gas-production (accessed 7 March 2019).
3 3 Gao, J. and You, F. (2017). Design and optimization of shale gas energy systems: overview, research challenges, and future directions. Computers and Chemical Engineering 106: 699–718. https://doi.org/10.1016/j.compchemeng.2017.01.032.
4 4 EIA (2018). Where Our Natural Gas Comes From. U.S. Energy Information Administration. https://www.eia.gov/energyexplained/index.php?page=natural_gas_where (accessed 4 March 2019).
5 5 Al‐Douri, A., Sengupta, D., and El‐Halwagi, M.M. (2017). Shale gas monetization – a review of downstream processing to chemical fuels. Journal of Natural Gas Science and Engineering 45: 436–455. https://doi.org/10.1016/j.jngse.2017.05.016.
6 6 Hu, D. and Xu, S. (2013). Opportunity, challenges and policy choices for China on the development of shale gas. Energy Policy 60: 21–26. https://doi.org/10.1016/j.enpol.2013.04.068.
7 7 Lozano Maya, J.R. (2013). The United States experience as a reference of success for shale gas development: the case of Mexico. Energy Policy 62: 70–78. https://doi.org/10.1016/j.enpol.2013.07.088.
8 8 OGJ‐editors (2019). WoodMac Lowers China Gas Production Forecast. Oil and Gas Journal. https://www.ogj.com/drilling-production/article/14038976/woodmac-lowers-china-gas-production-forecast (accessed 18 September 2019).
9 9 EIA (2019a). Growth in Argentina's Vaca Muerta Shale and Tight Gas Production Leads to LNG Exports. U.S. Energy Information Administration. https://www.eia.gov/todayinenergy/detail.php?id=40093 (accessed 17 September 2019).
10 10 EIA (2019b). Background Reference: Algeria. U.S. Energy Information Administration. https://www.eia.gov/beta/international/analysis_includes/countries_long/Algeria/background.htm (accessed 18 September 2019).
11 11 National Energy Board (2018). Canada's Energy Future 2018 Supplement: Natural Gas Production. National Energy Board. https://www.cer-rec.gc.ca/nrg/ntgrtd/ftr/2018ntrlgs/nrgftrs2018spplmntsntrlgs-eng.pdf (accessed 18 September 2019).
12 12 Duhalt, A., Mikulska, A., and Maher, M.D. (2019). A Proposed Shale Ban in Mexico. Baker Institute Issue Brief No. 05.03.19. Houston, TX: Rice University's Baker Institute for Public Policy.
13 13 EIA (2015). World Shale Resource Assessments. U.S. Energy Information Administration. https://www.eia.gov/analysis/studies/worldshalegas (accessed 17 September 2019).
14 14 Bullin, K.A. and Krouskop, P.E. (2009). Compositional variety complicates processing plans for US shale gas. Oil and Gas Journal 107: 50–55.
15 15 EIA (2019c). Henry Hub Natural Gas Spot Prices. U.S. Energy Information Administration. https://www.eia.gov/dnav/ng/hist/rngwhhdm.htm (accessed 7 March 2019).
16 16 Business Insider. (2019). Natural gas (Henry hub) prices. https://markets.businessinsider.com/commodities/natural-gas-price (accessed 17 September 2019).
17 17 Reuters. (2019). Texas Waha natural gas prices. https://www.reuters.com/article/us-usa-texas-permian-prices/texas-waha-natgas-prices-rise-ahead-of-gulf-coast-pipeline-start-up-idUSKCN1VR27U (accessed 17 September 2019).
18 18 EIA (2019d). Annual Energy Outlook 2019. U.S. Energy Information Administration. https://www.eia.gov/outlooks/aeo/pdf/aeo2019.pdf (accessed 7 March 2019).
19 19 He, C. and You, F. (2014). Shale gas processing integrated with ethylene production: novel process designs, exergy analysis, and techno‐economic analysis. Industrial and Engineering Chemical Research 53: 11442–11459. https://doi.org/10.1021/ie5012245.
20 20 Noureldin, M.M.B., Elbashir, N.O., and El‐Halwagi, M.M. (2014). Optimization and selection of reforming approaches for syngas generation from natural/shale gas. Industrial and Engineering Chemistry Research 53: 1841–1855. https://doi.org/10.1021/ie402382w.
21 21 Martínez, D.Y., Jiménez‐Gutiérrez, A., Linke, P. et al. (2014). Water and energy issues in gas‐to‐liquid processes: assessment and integration of different gas‐reforming alternatives. ACS Sustainable Chemistry & Engineering 2: 216–225. https://doi.org/10.1021/sc4002643.
22 22 Gabriel, K.J., Linke, P., Jiménez‐Gutiérrez, A. et al. (2014). Targeting of the water‐energy nexus in gas‐to‐liquid processes: a comparison of syngas technologies. Industrial and Engineering Chemical Research 53: 7087–7102. https://doi.org/10.1021/ie4042998.
23 23 Julián‐Durán, L.M., Ortiz‐Espinoza, A.P., El‐Halwagi, M.M., and Jiménez‐Gutiérrez, A. (2014). Techno‐economic assessment and environmental impact of shale gas alternatives to methanol. ACS Sustainable Chemistry & Engineering. 2: 2338–2344. https://doi.org/10.1021/sc500330g.
24 24 Ortiz‐Espinoza, A.P., Jiménez‐Gutiérrez, A., and El‐Halwagi, M.M. (2017). Including inherent safety in the design of chemical processes. Industrial and Engineering Chemistry Research 56: 14507–14517. https://doi.org/10.1021/acs.iecr.7b02164.
25 25 Yang, M. and You, F. (2017). Comparative techno‐economic and environmental analysis of ethylene and propylene manufacture from wet shale gas and naphta. Industrial & Engineering Chemistry Research 56: 4038–4051. https://doi.org/10.1021/acs.iecr.7b00354.
26 26 Ortiz‐Espinoza, A.P., Noureldin, M.M.B., Jiménez‐Gutiérrez, A., and El‐Halwagi, M.M. (2017). Design, simulation and techno‐economic analysis of two processes for the conversion of shale gas to ethylene. Computers and Chemical Engineering 107: 237–246. https://doi.org/10.1016/j.compchemeng.2017.05.023.
27 27 Thiruvenkataswamy, P., Eljack, F.T., Roy, N. et al. (2016). Safety and techno‐economic analysis of ethylene technologies. Journal of Loss Prevention in the Process Industries 39: 74–84. https://doi.org/10.1016/j.jlp.2015.11.019.
28 28 Peplow, M. (2017). How fracking is upending the chemical industry. Nature 550 (7674): 26–28. https://www.nature.com/news/how-fracking-is-upending-the-chemical-industry-1.22753.
29 29 Salerno, D., Arellano‐García, H., and Wozny, G. (2011). Ethylene separation by feed‐splitting from light gases. Energy 36: 4518–4523. https://doi.org/10.1016/j.energy.2011.03.064.
30 30 Stünkel, S., Illmer, D., Drescher, A. et al. (2012). On the design, development and operation of an energy efficient CO2 removal for the oxidative coupling of methane in a miniplant scale. Applied Thermal Engineering 43: 141–147. https://doi.org/10.1016/j.applthermaleng.2011.10.035.
31 31 Pérez‐Uresti, S.I., Adrián‐Mendiola, J.M., El‐Halwagi, M.M., and Jiménez‐Gutiérrez, A. (2017). Techno‐economic assessment of benzene production from shale gas. Processes 5: 1–10. https://doi.org/10.3390/pr5030033.
32 32 Agarwal, A., Sengupta, D., and El‐Halwagi, M. (2018). Sustainable process design approach for on‐purpose propylene production and intensification. ACS Sustainable Chemistry & Engineering 6: 2407–2421. https://doi.org/10.1021/acssuschemeng.7b03854.
33 33 Jasper, S. and El‐Halwagi, M.M. (2015). A techno‐economic comparison between two methanol‐to‐propylene processes. Processes 3: 684–698. https://doi.org/10.3390/pr3030684.
34 34 Babi, D.K., Holtbruegge, J., Lutze, P. et al. (2015). Sustainable process synthesis‐intensification. Computers and Chemical Engineering 81: 218–244. https://doi.org/10.1016/j.compchemeng.2015.04.030.
35 35 Bertran, M.O., Frauzem, R., Sańchez‐Arcilla, A.S. et al. (2017). A generic methodology for processing route synthesis and design based on superstructure optimization. Computers and Chemical Engineering 106: 892–910. https://doi.org/10.1016/j.compchemeng.2017.01.030.
36 36 Lutze, P., Babi, D.K., Woodley, J.M., and Gani, R. (2013). Phenomena based methodology for process synthesis incorporating process intensification. Industrial and Engineering Chemistry Research 52: 7127–7144. https://doi.org/10.1021/ie302513y.
37 37 Castillo‐Landero, A., Jiménez‐Gutiérrez, A., and Gani, R. (2018). Intensification methodology to minimize the number of pieces of equipment and its application to a process to produce dioxolane products. Industrial and Engineering Chemistry Research 57 (30): 9810–9820. https://doi.org/10.1021/acs.iecr.7b05229.
38 38 Buchaly, C., Kreis, P., and Górak, A. (2007). Hybrid separation processes – combination of reactive distillation with membrane separation. Chemical Engineering and Processing: Process Intensification 46 (9): 790–799. https://doi.org/10.1016/j.cep.2007.05.023.
39 39 Siirola, J.J. (1996). Industrial applications of process synthesis. Advances in Chemical Engineering 23: 1–62. https://doi.org/10.1016/S0065-2377(08)60201-X.
40 40 Castillo‐Landero, A., Ortiz‐Espinoza, A.P., and Jiménez‐Gutiérrez, A. (2019). A process intensification methodology including economic, sustainability and safety considerations. Industrial and Engineering Chemistry Research 58 (15): 6080–6092. https://doi.org/10.1021/acs.iecr.8b04146.